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Preface 

 
 
Many R&D projects and research groups are creating, standardizing, converting and/or using 
treebanks, thereby often tackling the same issues and reinventing methods and tools. While a fair 
amount of treebanks have been produced in recent years, it is still a challenge for researchers and 
developers to reuse treebanks in suitable formats for new purposes. Standardization of interchange 
formats, conversion and adaptation to different purposes, exploration with suitable tools, long term 
archiving and cataloguing, and other issues still require significant efforts. 
 
In this spirit, the present workshop has been conceived by four projects, namely T4ME, META-
NORD, CESAR and META4U, which under the META-NET umbrella project strive to make many 
treebanks and other language resources and tools available for R&D. It is hoped that the workshop 
will contribute to innovative insights that will promote development, dissemination, use and reuse 
of treebanks in the future. 
 
Thirteen papers were submitted to the workshop, of which ten were accepted for presentation at this 
half-day workshop. Six were selected for oral presentation while four were selected for poster 
presentation. We thank all our reviewers for their constructive evaluation of the papers. 
 
 

Jan Hajič 
Koenraad De Smedt 

Marko Tadić 
António Branco 

 
  



 

 



Parser-independent Semantic Tree Alignment

Tom Vanallemeersch

Centre for Computational Linguistics, KU Leuven (Belgium)
tallem@ccl.kuleuven.be

Abstract
We describe an approach for training a semantic role labeler through cross-lingual projection between different types of parse trees,
with the purpose of enhancing tree alignment on the level of syntactic translation divergences. After applying an existing semantic
role labeler to parse trees in a resource-rich language (English), we partially project the semantic information to the parse trees of the
corresponding target sentences (specifically in Dutch), based on word alignment. After this precision-oriented projection, we apply
a method for training a semantic role labeler which consists in determining a large set of features describing target predicates and
predicate-role connections, independently from the type of tree annotation (phrase structure or dependencies). These features describe
tree paths starting at or connecting nodes. The semantic role labeling method does not require any knowledge of the parser nor manual
intervention. We evaluated the performance of the cross-lingual projection and semantic role labeling using an English parser assigning
PropBank labels and Dutch manually annotated parses, and are currently studying ways to use the predicted semantic information for
enhancing tree alignment.

1. Introduction
This paper deals with the question whether we can use se-
mantic predicates and roles for automatically aligning syn-
tactically divergent parts in parse trees of parallel sentences.
We will focus on the aspect of providing trees with such se-
mantic information, and give a general idea on how to use
the information for alignment. We will look specifically
into the language pair English-Dutch.
Semantic predicates and roles operate at the level of mean-
ing rather than syntactic structure. For instance, at the syn-
tactic level, he breaks the window expresses a relation be-
tween a verb on one hand and its subject and object on
the other hand, whereas the semantic level shows a rela-
tion between a predicate (the verb), its “agent” (he) and
its “theme” (the window). The semantic relation between
predicate and theme can also be expressed by a passive syn-
tactic construction, in which the window is the subject, or
by a construction without direct object (the window breaks).
Semantic predicates and roles operating at a more abstract
level than syntactic structure, we investigate whether they
allow to find correspondences between nodes of a parse tree
in one language (henceforth called the source parse tree)
and the parse tree of its translation equivalent (the target
parse tree1) that are difficult to detect by merely looking at
similar syntactic structures in the parse trees.
Apart from the example of divergence mentioned above,
there are numerous other types of divergences, such as
translation of a verb by a noun (they adapt the techniques
vs de aanpassing van de technieken, i.e. ‘the adaptation of
the techniques’). Divergences may lead to a different struc-
ture of the source and target parse tree. Their structure can
also differ due to the type of parse tree (dependency-based
versus constituency-based parsing). Figure 1 shows an ex-
ample of a translation divergence involving an active vs a
passive construction. If we know that the subject of the En-

1When using the terms “source” and “target”, we abstract from
the actual translation direction, i.e. the source language may not
necessarily be the language in which the sentences were originally
written.

glish verb safeguard has “agent” as role, and that the obj1
node is the “agent” of the Dutch verb, we find the corre-
spondence.

Figure 1: Translation divergence: the English SBJ node
corresponds to the obj1 node in the Dutch passive construc-
tion (nodes below SBJ, su and obj1 are not shown).

2. Semantic frameworks
Semantic predicates and roles can be described as a way
to answer the question who did what to whom, and how,
when and where? (Palmer et al., 2010). In his sem-
inal paper, Fillmore (1968) defines the notion of “deep
cases”, such as agentive and instrumental. Several semantic
frameworks have been devised, and databases implement-
ing them. VerbNet (Kipper-Schuler, 2005), based on the
diathetic verb alternations of Levin (1993), associates verbs
to roles such as Agent and Theme. FrameNet (Baker et
al., 1998) describes prototypical situations that are linguis-
tically expressed through frames. For instance, the frame
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STATEMENT is “triggered” by the verbs state, speak, re-
port etc. A third example of a framework is PropBank
(Palmer et al., 2005), which describes the proto-agents and
proto-patients of specific verbs, a categorization which is
based on the theory of Dowty (1991). The argument which
shows the highest number of proto-agent (agent-like) prop-
erties is labeled ARG0, the one which shows the highest
number of proto-patient (patient-like) properties is labeled
ARG1. Verbs may also have a ARG2, ARG3 or ARG4 ar-
gument; the interpretation of these arguments is strongly
linked to the verb itself (e.g. ARG2 is the recipient of
the verb lease). The modifiers, like ARGM-TMP (tempo-
ral modifier), do not depend on the meaning of the verb.

As PropBank was specifically devised in order to make the
creation of a semantic database practical and to allow an
automatic semantic role labeler to be trained on it, we will
experiment with this semantic framework for evaluating
the semantic labeling approach described in this paper, and
with the complementary NomBank framework (Meyers et
al., 2004). The latter describes nominal predicates (dever-
bal nouns like recognition, or nouns unrelated to verbs) us-
ing the same roles as PropBank.

3. Strategies for semantic annotation

In this section, we will tackle the question of how to pro-
vide the source and target parse tree with semantic informa-
tion. We assume there exists a semantic role labeler for the
source language. If there is no labeler (of the same type) for
the target language, there are several alternatives. One is to
create manually annotated sentences and train a semantic
role labeler on them. A second alternative is to apply cross-
lingual projection of semantic predicates and roles using
word alignment, see e.g. Padó (2007), and to induce addi-
tional semantic predicates and roles in the target language
through manually crafted rules involving knowledge of the
target parser, e.g. guessing the predicate in the target sen-
tence if only source roles were projected (Vanallemeersch,
2010). A third alternative is to apply cross-lingual projec-
tion and train a labeler on the projected information.

Each of the alternatives mentioned has some disadvantages.
The first alternative is time intensive. The second alterna-
tive requires in-depth knowledge of the target parser, and
can only induce predicate-role relations if there exists a
partial projection. The third alternative requires a manual
selection of features from the target parser for building a
semantic role labeler. In order to tackle the dependency
on parsers and manual intervention, we devised a variant
of the third method, which automatically selects features
from the target parser to train a semantic role labeler. This
way, the method not only remains independent from the
target parser, but also makes it independent from the source
parser: if we transfer the manual or automatic annotations
in source parses to parses of another type, we can train a
labeler on them.

In the following sections, we describe our procedure for
crosslingual projection and for training a semantic role la-
beler.

4. Crosslingual projection
The idea of crosslingual projection consists in the transfer
of information of some kind from sentences in a resource-
rich language (typically English) to their equivalents in an-
other language, using alignment links, such as word align-
ment. This allows for inducing a preliminary resource
for the second language in a reasonable amount of time.
Projection was originally applied to syntactic annotations.
Later on, it was also applied to semantic information.
Padó applied it to an English-German corpus, transferring
FrameNet annotations to the German part through a word
alignment established by GIZA++ (Och and Ney, 2003).
In our approach, we enforce the following projection condi-
tion: if the GIZA++ intersective word alignment (which is
highly precise) contains a link between a source tree node
with a semantic predicate and a target tree node X, and
if the word alignment allows to establish an “exclusive”
match between one of the roles of the source predicate and
a target tree node Y, consider X the semantic predicate in
the target tree, and Y the semantic role of X. An exclusive
match between two nodes implies that all word alignment
links starting at one of the nodes end up in the other node.
Successful projection leads to a target parse node annotated
as predicate, and one or more nodes annotated as its roles.
For instance, the predicate safeguarded and its role conclu-
sions of the report Theato in Figure 1 can be projected to
the target tree. As we combine the precision of exclusive
matching with that of GIZA++ intersective alignment, we
are quite confident about the correctness of the predicate-
role annotations in the target trees. Obviously, the target
parse tree may contain additional predicate-role relations
which are not annotated by the projection, because of the
precision of the projection and the sparseness of the word
alignment. This sparseness can have several causes, such as
the syntactic divergences between the source and the target
sentences, the fact that they are paraphrases, etc.
In order to apply machine learning techniques for training a
semantic role labeler, we also project negative information.
This allows for learning both from positive and negative ex-
amples. We determine which nodes in the source tree are
not predicates (all nodes not annotated as predicates in the
source tree), and which nodes are not roles (all nodes not
annotated as roles in the source tree). We project these non-
predicates and non-roles to the target parse through inter-
sective word alignment and exclusive matching. All nodes
in the target parse tree that are not annotated through pro-
jection of positive or negative information are ignored by
the machine learning process described below; we do not
know whether they are predicates or roles. In the Dutch
tree in Figure 1, we see many non-predicates (the su node,
the obj node, . . . ) and non-roles (the dek af node, the su
node, . . . ).

5. Features for semantic role labeler
We now turn to a description of our approach for training
a semantic role labeler. Semantic role labeling typically in-
volves several steps, one for predicate identification, one
for identifying their roles and one for identifying the type
of the roles. For this purpose, classifier models are trained
on semantically annotated parses; together, they perform
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the task of semantic role labeling. For instance, if the pred-
icate was identified, a classifier model for identifying its
roles is typically trained on features such as the phrase type
and the parse tree path (Palmer et al., 2010). In order to
establish the list of features, some knowledge of the parser
is required. Parser-dependent restrictions may be imposed
on the identification of roles. For instance, they may only
be identified within the smallest clause containing the pred-
icate node.
The approach we propose here aims at the automatic de-
termination of features for classifier models, and as such at
independence from specific parsers. Our approach consid-
ers all properties of paths which start at specific nodes, or
connect two nodes, as features. The features have the fol-
lowing form, <direction> being either up (↑) or down
(↓): <feat=val>[<direction><feat=val>]*
For instance, the following features are determined for the
Dutch predicate node in Figure 1 (note that the visualization
tool2 we used only shows values, not features like rel, and
that we apply a threshold on the number of feature-value
pairs in the path property):

• rel=hd

• rel=hd ↑ rel=vc

• rel=hd ↑ cat=ppart

• . . .

The following features are determined for the Dutch
predicate-role path in the example in Figure 1:

• rel=hd ↑ rel=vc ↓ rel=mod ↓ rel=obj1

• rel=hd ↑ cat=ppart ↓ rel=mod ↓ rel=obj1

• . . .

We look for all features which occur in the set of positive
and negative examples of nodes and paths. For instance,
when building a classifier model for identifying predicate
nodes, we determine the features of predicate nodes and
non-predicate nodes. Each example becomes an instance
in the training set for classification, and is described using
the features. The target class of the instances in the train-
ing set is true (i.e. the instance is a predicate node) or false
(i.e. the instance is a non-predicate node). When build-
ing a classifier model for identifying predicate-role paths,
we determine the features of paths between predicate nodes
and their roles, and between predicate nodes and their non-
roles. The latter include all nodes of which we know with
certainty they are not a role of the predicate: (1) roles of
other predicates, (2) predicates, (3) non-predicates, and (4)
non-roles.
Even for a restricted number of nodes and paths, the num-
ber of features determined may be significant. We there-
fore store the features and their frequency in a trie. Each
feature is a key in the trie, and the labels leading to the
key have the form <direction>?<feat=val>). By
adding features with an increasing number of feature-value

2http://rug-compling.github.com/dact

pairs, and filtering out features occurring less than a thresh-
old, we keep the size of the trie and the time needed to
create it manageable. The trie moreover allows to store the
features of several classifier models in a compact way (we
store information for multiple models on the trie nodes).
Using the above mechanism to determine features, we can
build several types of classifier models, each with their own
features:

1. a model for identifying paths between predicates
and their roles; its classes are <role type 1>,
<role type 2>, . . . , none (the last class is used
for non-roles of the predicate node)

2. for each specific predicate observed (e.g. come), a
model for identifying paths between the predicate and
its roles; its classes are <role type 1>, . . .

3. a model for identifying predicate nodes: its classes are
true and false

4. a model for identifying role nodes: its classes are true
and false

5. . . .

The predictions of the second model get priority over that
of the first one (the first model acts as a fallback in case
there is too little information for a specific predicate).

6. Evaluation
We tested the crosslingual projection using a sample of
500 English-Dutch sentence pairs from Europarl (Koehn,
2005). We parsed the English sentences using the system
of Johansson and Nugues (2008) which simultaneously per-
forms syntactic and semantic parsing of English sentences,
and assigns PropBank and NomBank roles. We only re-
tained NomBank predicates which are linked to a Prop-
Bank roleset (deverbal nouns), and omitted modifiers like
ARGM-TMP. We parsed the Dutch sentences using Alpino
(Bouma et al., 2000). The crosslingual projection was per-
formed using GIZA++ intersective alignment. 49% of the
predicates were projected, and 69% of the roles of the pro-
jected predicates3. A manual assessment of 50 sentences
indicated a precision of 94% for predicate projections and
92% for role projections.
In order to test the performance of the semantic role label-
ing approach, we first performed a test with optimal input
for the training step (gold standard). We used a subset of
300 Dutch sentences from the SoNaR project (Schuurman
et al., 2010), which were parsed using Alpino and man-
ually annotated with PropBank roles.4 We automatically
determined features for the two first models mentioned in
section 5. Modifiers like ARGM-TMP were ignored. The
features were written to files in the ARFF format used by
machine learning programs. We trained the models with a

3Crosslingual projection using 500 English-French sentence
pairs from Europarl and a parser trained on the French treebank
using MaltParser (Candito et al., 2010; Abeillé et al., 2003; Nivre
et al., 2007) lead to a higher percentage for predicates (63%) but a
lower percentage for the roles of the projected predicates (53%).

4The consortium of the project provided us with those parses.
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support vector machine using the Weka toolkit5. An ex-
ample of a high-weight feature in the first model is the
following:6 pos=verb ↑ cat=smain ↓ rel=su. We
then created test ARFF files for the sentences used as train-
ing material. These files describe links between two nodes
which have to be classified. The two trained models were
applied to the test ARFF files in order to get a class predic-
tion for the links. We did not carry out predicate identifi-
cation for this test (we assumed the predicates of the sen-
tences to be known beforehand), hence ignored any links
not involving the known predicates. The prediction for the
remaining links was evaluated as follows:

1. If there was a prediction from the second model (i.e.
there is a specific classifier for the predicate in the
link), and both the role node and role type predicted
are equal to that of the gold standard, the prediction
was considered correct. If the prediction involved the
same role node but another role type than the gold
standard, or a role node not present in the gold stan-
dard, the prediction was considered incorrect.

2. If there was no prediction from the second model, the
same conditions as above are applied for the prediction
of the first model.

For the recall calculation, we kept track of the predicate-
role links in the gold standard which did not match a predic-
tion on both the role and role type. The first row in Table 1
shows the precision, recall and F-score of the predictions.
We subsequently tested the semantic role labeling approach
by training on automatic annotations, i.e. crosslingual pro-
jections. We took a sample of 600 English-Dutch sentence
pairs from the DPC corpus (Macken et al., 2007) and per-
formed crosslingual projection in the same fashion as de-
scribed above for the Europarl corpus. We trained the two
first models mentioned in section 5. on the predicates and
roles in the Dutch parse trees. We then created test ARFF
files for the gold standard of SoNaR, and applied the two
models in order to get predictions and evaluate them against
the manual annotations in the gold standard. The second
row in Table 1 shows the performance. One of the reasons
that the models trained on the projection perform worse
consists in a lack of information for creating predicate-
specific classifiers. For instance, the subject of komen (‘to
come’) is labeled as A0 in the projection-based predictions
instead of A1 as no classifier model for komen was built.
However, some types of information which are valid in a
more general fashion are captured both by gold standard-
based and projection-based models, e.g. the fact that sub-
jects of passive constructions are the A1 of the predicate.
We are currently studying how to use the predicted infor-
mation for tree alignment. Consider the following sentence
pair:

• English: introduced in the autumn of 2004 , this pro-
cedure simplifies the deposit of ...

5http://www.cs.waikato.ac.nz/ml/weka
6This is a path between the verb of the main clause and its

subject.

Table 1: Statistics of classifier models

Precision Recall F-score
Gold standard models 0.77 0.60 0.67
Projection models 0.67 0.50 0.57

• Dutch: deze vereenvoudigde procedure werd in de
herfst van 2004 ingevoerd en vergemakkelijkt de
afgifte van ... (‘this simplified procedure was in the
autumn of 2004 introduced and makes-easier the de-
posit of ...’)

The English parser establishes a relation between the pred-
icate simplifies and the roles this procedure (A0) and the
deposit of ... (A1). Our semantic role labeling approach
predicts a relation between the predicate vergemakkelijkt
and the roles deze vereenvoudigde procedure (A0) and de
afgifte van ... (A1). As GIZA++ intersective alignment
does not contain a link between simplifies and vergemakke-
lijkt, the English predicate and role were not projected.
However, the word alignment allows to link this procedure
with deze vereenvoudigde procedure and the deposit of ...
with de afgifte van .... This way, we have sufficient infor-
mation to align both the predicates and the roles.
Another example:

• English: a systematic survey of the various national
regulations

• Dutch de nationale regelgeving moet worden onder-
zocht (‘the national regulation must be examined’)

The English parser establishes a relation between survey
(nominal predicate) and the various national regulations
(A1). Our semantic role labeling approach predicts a re-
lation between the predicate onderzocht and de nationale
regelgeving (A1). GIZA++ intersective alignment contains
a link between survey and onderzocht; based on the pre-
dicted information, we can link their roles the various na-
tional regulations and de nationale regelgeving.

7. Conclusions and future research
We have discussed a method for cross-lingual projection
and parser-independent semantic role labeling. The pro-
jection method is precision-based. Training the semantic
role labeler does not require any knowledge of the parser
nor manual intervention. Training classifier models on
parses with manual annotation of PropBank labels leads to
a higher performance than training on projected informa-
tion. The question remains to be seen in how far this is a
question of the size of training data; in this respect, projec-
tion data have the advantage of being much more obvious
to produce than manual annotations.
We are currently training and testing several types of classi-
fier models. We also include modifiers such as ARGM-TMP
in the training, and explore ways to use the predicted infor-
mation for enhancing tree alignment on the level of syntac-
tic divergences. A part of the DPC corpus has been pro-
vided with a manual word alignment. We will use this part
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as a gold standard for evaluating tree alignment, and com-
pare our tree alignment results with that of two other tree
alignment systems, Lingua-Align (Tiedemann and Kotzé,
2009) and Sub-Tree Aligner (Zhechev and Way, 2008).
As future research, we envisage including predicted seman-
tic information as a feature in Lingua-Align, and using the
mechanism for automatic feature determination from nodes
and paths for other purposes than semantic role labeling.

8. References
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Abstract
We present in this paper a method for hybridizing constituency treebanks with constraint-based descriptions and enrich them with an
evaluation of sentence grammaticality. Such information is calculated thanks to a two-steps technique consisting in : (1) constraint
grammar induction from the source treebank and (2) constraint evaluation for all sentences, on top of which a grammaticality index is
calculated. This method is theoretically-neutral and language independent. Because of the precision of the encoded information, such
enrichment is helpful in different perspectives, for example when designing psycholinguistics experiments such as comprehension or
reading difficulty.

1. Introduction
Besides syntactic description and NLP tools development,
treebanks also play an important role in more specific per-
spectives such as ambiguity resolution (Koller and Thater,
2010), discourse analysis (Webber, 2009) or spoken lan-
guage description (Wouden et al., 2002). More and more
frequently, treebanks are used for interdisciplinary stud-
ies, in particular in psycholinguistics, bridging the gap be-
tween experimental studies (e.g. eye-tracking) and linguis-
tic resource description (Keller, 2004; Demberg and Keller,
2008; Tomanek et al., 2010).
These different works share the fact that they rely on differ-
ent types of information (morphology, syntax, semantics,
or prosody), encoded at different levels (word forms, cate-
gories, sentences) and possibly incomplete. The problem is
that a classical representation in terms of constituency hi-
erarchy is not the right level of description for these new
tasks (parsing spoken languages, building difficulty mod-
els, etc.), in particular because failing in representing par-
tial structures, ill-formed constructions, etc.
Developing treebanks with a finer granularity of syntactic
description is then necessary. Constraint-based represen-
tations are well equipped in such perspective: constraints
can be very precise, possibly not connected to each others
and may bring together different levels of representation.
Treebanks bearing such precise information would then be
of great help. Unfortunately, constraint parsers are of great
complexity and often suffer from over-generation.
We propose in this paper to bypass this problem: instead of
building constraint-based treebanks from scratch, we pro-
pose an hybridization technique building the constraint-
based representation starting from a constituency-based
one. Knowing syntactic structure (the original tree) dramat-
ically reduces the search space required when building the
constraint representation. The interest is that this technique
is entirely automatic. It consists first in inducing a con-
straint grammar from the source treebank and then to build
the constraint-based representation thanks to a set of con-
straint solvers exploiting this grammar. This technique, on
top of being efficient, is generic: it is independent from any

linguistic formalism as well as from the language: it can
be applied to any constituency treebank. Moreover, other
kinds of information derived from the constraint-based rep-
resentation, such as grammaticality level, can also enrich
the structure, opening the way to new applications, for ex-
ample in psycholinguistics.
After a brief presentation of the main characteristics of
the constraint-based representation, the grammar induction
process is described. It consists in gathering all the pos-
sible realizations of the different categories of the corpus.
The result is a large context-free grammar on top of which
the constraint grammar is generated. The third section
presents the hybridization mechanism which build the con-
straint treebank starting from the constituency. The applica-
tion of this process to the French Treebank (Abeillé, 2003)
is described and some results are discussed. The last sec-
tion describes a treebank enrichment: the evaluation of the
grammaticality completes the description of the different
categories realized in the treebank.

2. Constraint-Based Syntactic
Representation

Phrase-structure representations use a unique explicit rela-
tion, hierarchy, that encode constituency information. All
other information such as linear order, headedness, depen-
dency, etc. are implicit. On the opposite, constraint-based
representations encode explicitly all these relations, making
it possible to verify their level of satisfaction and to evalu-
ate precisely the structure grammaticality. Such syntactic
representation syntax has been experimented in different
projects (Blache, 2005). In terms of parsing, the technique
consists in considering relations as constraints, satisfaction
being the core of the parsing process. We propose to rep-
resent syntactic information by means of six different types
of constraints that describe phrase-level constituents:

• Linearity: linear precedence relations between the
constituents of a phrase

• Obligation: possible heads of a phrase
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• Dependency: dependency relations between the con-
stituents

• Uniqueness: constituents that cannot be repeated in a
phrase

• Requirement: mandatory cooccurrence between cate-
gories

• Exclusion: cooccurrence restriction between cate-
gories

A complete grammar can be represented by means of such
constraints: each phrase-level category is described by a
set of constraints between constituents. Parsing an input
comes to evaluating for each category the set of constraints
that describes it. Concretely, for a given category and a
given set of constituents, the mechanism consists in satis-
fying all constraints, for example verifying that within the
set of constituents, the head is realized (obligation) or that
linearity constraints hold. At the end of the evaluation pro-
cess, the parser has built a set of evaluated constraints. As
a consequence, parsing two different realizations of a same
category (in other words two different sets of constituents)
will result in different sets of evaluated constraints (that can
possibly be violated). The final set of evaluated constraints
for a given input (also called a characterization) forms a
description graph, as illustrated in figure 1 (we will use in
the remaining of the paper examples from the French Tree-
bank).
We can see in this graph how constraints represent explic-
itly the different kinds of syntactic information. In particu-
lar, it illustrates the fact that the number of evaluated con-
straints can be very different from one constituent to an-
other. This property, together with the fact that constraints
can be violated, is of central interest because describing
precisely the syntactic relations, not only in terms of hi-
erarchy. Such a rich representation makes it possible to
quantify these two aspects of the syntactic structure: den-
sity and quality. We describe in the following a method for
enriching constituency treebanks with such information, in-
dependently form the language.

3. Constraint Grammar Induction from
Constituency Treebanks

Even if some effort have been done in terms of homoge-
nizing the different syntactic annotation schemes (Abeillé,
2003), the encoded information can be very different from
one treebank to another. For example functional annota-
tion can be more or less precise or dependent from the cho-
sen formalism (compare for example (Bies et al., 1995),
(Abeillé et al., 2003), (Telljohann et al., 2004) or (Böhmová
et al., 2003)). Still, constituency treebanks contains by defi-
nition, on top of the morpho-syntactic level, the hierarchical
structure. We present in this section a procedure acquiring
automatically the different constraints corresponding to the
implicit grammar of the treebank. The mechanism is based
on the analysis of all possible constructions of the differ-
ent categories which corresponds, in terms of context-free
grammars, to the set of the possible right-hand sides of non-
terminal categories.

Calculating the construction sets consists for all non-
terminal categories XP in traversing the treebank and iden-
tifying its daughters. The result, noted RHS (XP), is made
of ordered subsets of categories.
Let’s note in the following ≺ the precedence relation be-
tween two categories into a construction. The set of con-
straints is then calculated for each non terminal category
XP as follows:

• Constituency: for each non-terminal category XP, its
set of constituents, noted const(XP), is the set of cat-
egories participating to the constructions in RHS(XP).
Let’s note that the tagset used in the constraint gram-
mar to be built can be adapted at this stage: categories
can be, according to the needs, more precise or at the
opposite more general than that of the initial tagset.

• Linearity: the precedence table is built in verifying for
each category preceding another category into a con-
struction (or a right-hand side) whether this relation is
valid throughout the set of constructions

∀ rhsm ∈ RHS (XP)
if ((∃ (ci, cj) ∈ rhsm | ci ≺ cj)
and (@ rhsn ∈ RHS (XP) | (ci, cj) ∈ rhsn ∧ ci ≺ cj))
then add prec(ci , cj )

• Uniqueness: the set of categories that cannot be re-
peated in a right-hand side.

∀ rhsm ∈ RHS (XP)
∀ (ci, cj) ∈ rhsm

if ci 6= cj then add uniq(ci)

• Requirement: identification of two categories that co-
occur systematically in all constructions of an XP.

∀ rhsm ∈ RHS (XP)
bool ← ((ci ∈ rhsm) ∧ (cj ∈ rhsm))
if bool then add req(ci , cj )

• Exclusion: when two categories never co-occur in the
entire set of constructions, they are supposed to be in
exclusion. This is a strong interpretation, that leads to
over-generate the number of such constraints. How-
ever, it is the only way to identify it automatically.

∀ rhsm ∈ RHS (XP)
bool ← ¬((ci ∈ rhsm) ∧ (cj ∈ rhsm))
if bool then add excl(ci , cj )

Besides this direct acquisition from the treebanks, two other
constraint types require explicit formulation:

• Obligation: the heads of a phrase. Identified as the
minimal set of compulsory constituents. Usually, this
set is identified by means of specific sets of rules (cf.
(Lin, 1998)). Note that multiple heads are allowed.
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Figure 1: Description graph of the sentence“The text itself had received their formal agreement”

• Dependency: this constraint typically encodes gram-
matical relations. When present, they usually encodes
complementation, modification or specification. Au-
tomatic acquisition in this case is dependent on the
treebank and the way such relations are encoded.

The example figure 2 illustrates the acquisition process for
the adjectival phrase. We work in this experiment on a sub-
set of the French Treebank (Abeillé et al., 2003), made of
134,445 words, manually corrected. The figure 2 presents
the list of AP constructions in this treebank. The total num-
ber of rhs is indicated in the right column, the total number
of AP in the sub-corpus being 2,657. There are 56 different
types of rhs (for sake of space, only the a subpart is men-
tioned here). We can note that the 5 most frequent rhs types
represent 95% of the possible constructions (providing im-
portant indication when building probabilistic grammars).
It is also interesting to note that in 84% of the cases, the AP
is formed by a unique constituent, its head. On the opposite,
complex constructions, made of more than two constituents
are very rare.
In this encoding, without entering into the detail of the
tagset, the qualificative adjective is encoded ’Af ’, the others
being noted ’A-’. Coordination is indicated at the category
level and treated as a feature (for example NP:COORD).
Finally, punctuation marks correspond to the category W.
The extraction of the AP constraint system is presented fig-
ure 3. The first remark is that this constraint-based rep-
resentation is very compact. This observation illustrates
the fact that, as was observed with the ID/LP formalism
in GPSG (Gazdar et al., 1985), a separate encoding of dif-
ferent types of syntactic information makes it possible to
factorize a CFG rule-based representation. In fact, our ap-
proach systematizes the ID/LP one: we distinguish 6 dif-

Constituents Occ. Constituents Occ.
Af 1930 A- Ssub 1
A- 302 AdP Af Wm PP Wm PP 1
AdP Af 159 AdP Af Wm NP Wm Ssub 1
Af PP 63 Af Wm Ssub Wm PP 1
Af VPinf 19 AdP Wm AdP Af PP 1
AP Af 17 Af AdP 1
AdP Af Ssub 13 AdP Af AdP 1
AdP Af PP 8 AP Wm Cc AP Wm 1
A- PP 7 NP Af 1
Af Ssub 6 PP Af 1
AP A- 5 Af NP 1
AdP A- 4 AP AdP 1
AdP Af VPinf 3 AdP Wq Af Wq 1
Af PP:COORD 3 A- Wm A- 1
Af NP:COORD 2 AdP Af NP 1
AdP AdP Af 2 AdP Af NP PP VPinf 1
Af PP PP 2 Af Wm NP Wm PP 1

Figure 2: AP realizations in the FTB

ferent types of information where ID/LP takes into account
2 of them. One can see that this representation steps over a
level of generalization, thanks to the factorization.
Another important remark concerns frequency: it is not
necessary to take into account all constructions under a
certain frequency threshold. Generally speaking, construc-
tions with at least 2 realizations in the treebank are rea-
sonably representative. By another way, in case of conflict
between two constraints, the most frequent one is chosen.
It is the case in this example with the linearity constraint
between AdP and A: all realizations but one satisfy the
constraint AdP ≺ A. We keep then this constraint in the
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const {AdP, A, VPinf, PP, Ssub, AP, NP}

lin
A ≺ {VPinf, Ssub, PP, NP, AP}
AdP ≺ {A, Ssub, PP}
AP ≺ {A, AdP}
PP ≺ {Ssub}

dep {AdP, VPinf, PP, Ssub, NP} A
uniq {A, VPinf, Ssub}
oblig {A}
excl VPinf ⊗ {PP, Ssub}

Figure 3: AP properties

final description.
In our experiment, as presented figure 4, the grammar con-
tains a total of 493 constraints extracted from the treebank
(taking into account only constructions with more than one
realization). There are important differences between the
constructions with respect to the number of constraints as
well as their distribution. The NP, because of the great vari-
ability of its possible realizations, requires a high number
of constraints. As for the constraint types, linearity is the
most frequent, illustrating the fact that word order in French
is highly constrained. It is also interesting to note that the
size of the constraint set is not directly dependent from the
number of constituents (compare AdP, Ssub and VP).
The following example, taken from the FTB, illustrates
the evaluation of the constraint grammar for the AP “plus
économique que politique (more economical than politic)”:

const {AdP, A, Ssub}

lin
A ≺ Ssub
AdP ≺ A

dep {AdP, Ssub} A
uniq {A, Ssub}
oblig {A}
excl VPinf ⊗ Ssub

This example shows the interest of a constraint-based de-
scription which provides many precise information not di-
rectly accessible in a constituency-based representation.
We will see in the last section of the paper the importance
of such description for different applications.

4. Enriching Treebanks with a
Constraint-Based Description

Our treebank enrichment consists in building an hybrid
syntactic representation, one (the original) being purely
constituency-based, the second being constraint-based.
Generally, building a constraint-based representation as de-
scribed in section 2 is a computationally complex process,
highly non-deterministic, in particular due to constraint re-
laxation. However, the task in our case is to enrich an ex-
isting treebank. The problem consists to evaluate the con-
straint system for each node of the original tree instead of
building an entire graph description starting from the ini-
tial set of words. Concretely, the process comes to traverse
for each sentence its original tree. At each node, the con-
straint set describing the corresponding category is evalu-
ated thanks to different constraint solvers, presented in the
following in terms of set operations.

We note |E| the cardinality of the set E; C the ordered set
of constituents of the category taken into account; Ci..j the
sublist of C between positions i and j; ci a constituent of C
at position i; n the number of different constituents belong-
ing to C.
Constraints are of two types: those specifying a set (obliga-
tion, uniqueness) and those defining relations between sets
of categories. In the first case, we note Scx the set of cate-
gories specified by the constraint of type cx. In the second
case, we note Lcx and Rcx respectively the left and right
parts of the constraint cx.

• Obligation: this operation consists in verifying the
presence of one of the obligatory categories specified
in the obligation constraints. In terms of sets, this
means that the intersection between the set of realized
constituents C and the set of categories specified in the
obligation constraint:

|C ∩ Soblig| > 0

• Linearity: the verification of the linear precedence
constraints consists in verifying that when a category
belonging to a left-hand side of a linearity constraint
is realized, then no category of the right-hand side can
be realized in the sublist of the current category list of
constituents preceding it:

∀ci ∈ Llin, @cj ∈ Rlin such that cj ∈ C1..k ∧ ci ∈
Ck+1..n

• Uniqueness: this constraints verifies that the specified
categories are not repeated, which means that the in-
tersection of the category and the set of realized con-
stituents is not greater than one:

∀ci ∈ Suniq, |ci ∩ C| 6 1

• Requirement: when one category of a LHS of this con-
straint is realized, then one of its RHS should too:

∀ci ∈ Lreq ∧ cj ∈ Rreq, ci ∈ C ⇒ cj ∈ C

• Exclusion: when one category of a LHS of this con-
straint is realized, then no category of its RHS should
be present:

∀ci ∈ Lreq ∧ cj ∈ Rreq, ci ∈ C ⇒ cj 6∈ C

Thanks to these mechanisms, a constraint-based annotation
can be built on top of the constituency structure. Con-
cretely, this mechanism makes it possible to build a parallel
treebank as well as an hybrid one. In the first case, two dif-
ferent sets of syntactic annotations are built: one represent-
ing the constituency representation, the other the constraint-
based one, both of them being aligned at the word level.
Another type of representation of the treebank consists in
enriching the constituency structure: the description of non-
terminal categories (the nodes of the tree) is completed by
a set of relation between its constituents (their daughters).
The example in figure 6 illustrates this second approach.
Enriching a constituency tree consists in calculating the set
of constraints of the FTB constraint grammar that are satis-
fied for each node of the tree. As presented above, the result
consists in a characterization, which is the set of constraints
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AdP AP NP PP SENT Sint Srel Ssub VN VNinf VNpart VP VPinf VPpart Total
const 10 7 13 7 8 8 7 10 6 7 7 10 9 8 115
dep 5 6 18 5 3 5 5 6 8 59
exc 1 2 44 2 6 3 3 61
req 6 4 4 14
lin 18 10 36 6 5 4 7 14 11 6 7 24 13 7 165
oblig 1 1 4 1 1 1 1 1 1 3 2 1 1 1 20
uniq 4 3 10 3 3 4 4 1 2 4 5 3 7 6 59

39 22 131 22 22 23 22 29 25 29 31 46 30 22 493

Figure 4: Distribution of the constraints in the FTB-acquired grammar

<category label="SENT" sample index="0" sentence index="0:16" node index="0:16:0">
<category label="NP" features="NP:SUJ" node index="0:16:1">

<category label="Det" features="Da-ms----" node index="0:16:2" form="Le" lemma="le"/>
<category label="Noun" features="Ncms--" node index="0:16:3" form="texte" lemma="texte"/>
<category label="AP" features="AP" node index="0:16:4">

<category label="Adj" features="Af-ms-" node index="0:16:5" form="mme" lemma="mme"/>
</category>

</category>
<category label="VP" features="VP" node index="0:16:6">

<category label="VN" features="VN" node index="0:16:7">
<category label="Aux" features="Vaii3s--" node index="0:16:8" form="avait" lemma="avoir"/>
<category label="Verb" features="Vmps-smaip--" node index="0:16:9" form="reu" lemma="recevoir"/>

</category>
<category label="NP" features="NP:OBJ" node index="0:16:10">
<category label="Det" features="Ds3msp---" node index="0:16:11" form="leur" lemma="leur"/>
<category label="Noun" features="Ncms--" node index="0:16:12" form="accord" lemma="accord"/>
<category label="AP" features="AP" node index="0:16:13">

<category label="Adj" features="Af-ms-" node index="0:16:14" form="formel" lemma="formel"/>
</category>

</category>
</category>
<category label="Pct" features="Wd" node index="0:16:15" form="." lemma="."/>

Figure 5: Example of a tree in the FrenchTreeBank

that can be evaluated for this specific realization. The ex-
ample figure 6 shows the enrichment for the subject NP .
In this encoding, the characterization is a set of constraints
encoded by the elements < property >. In this representa-
tion, all constraints are encoded as relations between two nodes.
In the case of set constraints (for example uniqueness constraints
that specifies the categories that cannot be repeated), the corre-
sponding evaluated constraint is encoded as a relation between
the node and the category. Each element contains 4 attributes: the
type of the corresponding constraint, its source and target and the
result of its satisfaction (true or false). In this example, the charac-
terization represents linearity Det ≺ N, Det ≺ AP, dependencies
between Det, AP and N, etc. As mentioned above, the interest of
such representation lies in the fact that it offers a precise descrip-
tion of the different syntactic properties.
Moreover, each constraint is evaluated independently and can be
satisfied or possibly violated. This means that such representation
can also encode non-grammatical, partial or ill-formed construc-
tions. Let’s imagine for example that in our example, the noun
would precede the determiner. The only difference in the charac-
terization would then be the value of the attribute sat, set to false
in the corresponding constraint:

<prop type="lin" srce="0:16:2" tget="0:16:3" sat="f"/>

This characteristic is interesting when describing specific data
such as second-language acquisition, spoken language, patholog-
ical productions, etc.
Table 1 recaps some figures of the FTB sub-treebank described
above and the application to the enrichment procedure. The first
table indicates the number of categories observed in the tree-
bank. As already underlined, NP is by far the most frequent cat-
egory, followed by PP. Moreover, as mentioned above, NP has a

SENT 1 471
NP 8 127
AP 2 632
VP 2 550
VN 2 628
PP 4 124
AdP 1 733
Srel 508
Ssub 476
Sint 352
VPinf 917
VPpart 618
VNinf 863
VNpart 616

lin 27 367
obl 32 602
dep 21 971
exc 89 293
req 11 022
uni 38 007

Table 1: Number of constraints by category and type

great variability of realizations, in comparison to other categories,
which has also consequences on the distribution of the constraint
types. The second table indicates the total number of evaluated
constraints for the treebank, indicated per type. In this case too,
we can observe a great difference in the distribution at a first
glance. However, this aspect mainly comes from the frequency
of the NP that uses a lot of exclusion and uniqueness constraints.

It is interesting to have a closer look at the distribution of the dif-
ferent evaluated constraints by category. The results for the FTB
sub-treebank are presented in figure 7. Note that the number of
constraints in the grammar is not directly correlated with the num-
ber of evaluated constraint (which is expected) but also to the fre-
quency of the category: PP is a very frequent category with an
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<category label="NP" features="NP:SUJ" node index="0:16:1">
<category label="Det" features="Da-ms----" node index="0:16:2" form="Le" lemma="le"/>
<category label="Noun" features="Ncms--" node index="0:16:3" form="texte" lemma="texte"/>
<category label="AP" features="AP" node index="0:16:4">

<category label="Adj" features="Af-ms-" node index="0:16:5" form="mme" lemma="mme"/>
</category>
<characterization>

<property type="lin" source="0:16:2" target="0:16:3" sat="p"/>
<property type="lin" source="0:16:2" target="0:16:4" sat="p"/>
<property type="req" source="0:16:3" target="0:16:2" sat="p"/>
<property type="dep" source="0:16:2" target="0:16:3" sat="p"/>
<property type="dep" source="0:16:4" target="0:16:3" sat="p"/>
<property type="oblig" source="0:16:1" target="0:16:3" sat="p"/>
<property type="uniq" source="0:16:1" target="0:16:2" sat="p"/>

</characterization>
</category>

Figure 6: Example of a FTB enriched tree for the NP

average number of constraints in the grammar, but represents only
7% of the number of evaluated constraints. This figure is to be
compared to that of the SENT category, which represents 31% of
the total. However, and this very clear when comparing with the
NP, the frequency of exclusion and uniqueness constraints, which
is highly variable, mainly explains this observation.
More interestingly, the respective role of constraint types for each
category can be measured when putting together these different
information. In particular, the frequency of the constraint type
in the treebank for a given category has to be balanced with its
frequency in the grammar: a constraint type very frequent in the
treebank and with few instance in the grammar will play a more
important role in the syntactic description. In other words, the
respective weights of constraint types for each category can be
automatically evaluated thanks to these figures. We propose the
following formula:

weight(cx) =
freqtbank(cx)

freqgram(cx)
(1)

Figure 8 presents the application of this measure to the FTB. We
can observe for example that for the NP, even though the evalu-
ation of the exclusion constraint is much more frequent than oth-
ers, its relative importance is balanced with respect to others types
such as requirement or linearity, which is expected from a syntac-
tic point of view.

5. Enriching Treebanks with
Grammaticality Information

We present in this section the application of a grammaticality eval-
uation technique making use of to the constraint-based enrichment
presented in the previous section. Such information, as mentioned
in the introduction, can be of great help in particular for psycholin-
guistics experiments.
One of the characteristics of our constraint-based representation
is that it is possible to quantify the number of constraints and
their relative importance. This evaluation have been described in
(Blache et al., 2006) and relies on the study of the set of evaluated
constraints. The method proposes different scoring terms on top
of which a grammaticality index is calculated.
We note in the following N+

c the amount of constraints satisfied
by the constituent c, N−

c the constraints violated, N+
c , and Ec

the total number of constraints that received an evaluation (i.e.
N+

c +N−
c ). We note Tc the total amount of constraints (evaluated

or not) specifying the category c. Constraints being weighted, we
note W+

c (respectively W−
c ) the sum of the weights assigned to

the constraints satisfied (respectively violated) by the constituent
c. The different terms are calculated as follows:

• Satisfaction/Violation Ratio: SRc (resp. V Rc) is the num-
ber of satisfied constraints (resp. violated) divided by the
number of evaluated constraints:

SRc =
N+

c

Ec
VRc =

N−
c

Ec

• Completeness Index: number of evaluated constraints di-
vided by the total number of constraints for the category c:

CI c =
Ec

Tc

• Quality Index: distribution of the weights of satisfied and

violated constraints: QI c =
W+ −W−

W+ + W−

• Precision Index: The Index of Precision for the constituent c
is defined as the following ratio: PI c = k ·QI c + l ·SRc +
m · CIc

These adjustment coefficients (k, l, m) are used as variable
parameters for tuning up the model.

Finally, the global Grammaticality Index (GIc) is a function of the
previous indexes. It is defined recursively as follows, where c is a
constituent and ci is a nested constituent of c:

GI c = PI c ·GI ci = PIc ·
PZc

i=1 GI ci

Zc

Besides the constraint description, each node of the treebank can
also be enriched with its grammaticality evaluation as presented
in the figure 9.

6. Conclusion
We have presented in this paper a method for enriching con-
stituency treebanks with a constraint-based representation, which
offers the interest to propose a very precise representation of syn-
tactic information on top of which automatic grammaticality eval-
uation can be calculated. Such constraint-based representation has
been shown to be adapted to the description of non-canonical in-
put (for example spoken language).
This technique is generic in the sense that it is independent from
the source formalism and can be applied to any constituency-
based treebank. Grammar induction only depends on the analysis
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AdP AP NP PP SENT Sint Srel Ssub VN Vninf Vnpart VP Vpinf Vppart
dep 41 320 7 730 3 871 7 114 0 0 8 854 143 24 1 866 0 0 21 971
exc 4 157 57 232 0 31 820 54 18 8 0 0 0 0 0 0 89 293
req 0 0 6 451 0 4 489 0 0 0 0 72 10 0 0 0 11 022
lin 9 360 9 336 3 895 8 960 0 2 475 965 143 24 2 329 709 160 27 367
obl 1 732 2 562 8 010 3 942 7 073 270 486 463 2 620 863 616 2 523 838 604 32 602
uniq 1 733 2 589 11 586 3 942 10 385 286 506 463 680 144 640 2 642 1 614 797 38 007

3519 5 988 100 345 15 650 69 841 610 1 012 1 417 5 119 1 365 1 314 9 360 3 161 1 561 22 0262

Figure 7: Distribution of the evaluated constraints in the FTB sub-treebank

AdP AP NP PP SENT Sint Srel Ssub VN Vninf Vnpart VP Vpinf Vppart
dep 0.0676 0.2271 0.5050 0.7420 0.4753 - - 0.1129 0.6340 0.4610 0.0731 0.8971 - -
excl 0.0330 0.2229 1.5296 - 3.1892 0.2361 0.0949 0.0376 - - - - - -
req - - 1.2643 - - - - - - 0.2901 0.0457 - - -
lin 0.0041 0.1460 0.3050 0.6222 0.3592 - 0.0045 0.4789 0.3256 0.3841 0.0626 0.3732 0.3623 0.2196
oblig 14.2734 7.2735 2.3548 3.7783 1.4178 7.0820 7.6838 6.5349 9.7246 4.6364 5.6256 9.7038 5.5672 5.8040
unic 3.5704 2.4501 1.3624 1.2594 0.6939 1.5003 1.6000 6.5349 1.2620 0.5802 2.3379 3.3872 1.5318 1.0941

Figure 8: Weights of the constraint types in the FTB

of the realizations of the different constituents. As a consequence,
the different constraints can be generated directly from the origi-
nal constituency representation. Starting from such grammar, the
annotation process itself is entirely automatic. This ensure the
consistency of the encoding as well as the reusability of the pro-
cess. Moreover, it is language independent, the constraint gram-
mar being automatically acquired from the original treebank.
Several works can take advantage from this kind of resources. In
particular, grammaticality evaluation makes it possible to compare
the different realizations of a same construction as well as quantify
its “prototypicity”: a high grammatical score usually comes from
the fact that the corresponding construction contains redundant in-
formation, reinforcing its categorization. This kind of information
is useful for example in discourse relations identification, speaker
involvement evaluation, etc.
As an example, two on-going experiments rely on such treebanks.
First, eye-tracking data are on the process to be acquired for the
French Treebank, making it possible to look for correlation be-
tween grammaticality and difficulty. A second project concerns
cross-linguistic study of constraint-based representation, applied
to English, Chinese and Arabic. The idea consists here in ac-
quiring a constraint grammar for each of these languages and to
compare the description (and the grammaticality) of a same con-
struction through languages.
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bank for french. In A. Abeillé, editor, Treebanks, Kluwer, Dor-
drecht.
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<category label="SENT" sample:index="0" sentence:index="0:16" node:index="0:16:0">
<category label="NP" features="NP:SUJ" node:index="0:16:1">

<category label="Det" features="Da-ms----" node:index="0:16:2" form="Le" lemma="le"/>
<category label="Noun" features="Ncms--" node:index="0:16:3" form="texte" lemma="texte"/>
<category label="AP" features="AP" node:index="0:16:4">

<category label="Adj" features="Af-ms-" node:index="0:16:5" form="mme" lemma="mme"/>
<indices grammaticality="0.5866" sat:ratio="1.0" completeness="0.1176" quality:index="1.0" precision="0.5847"/>

</category>
<indices grammaticality="0.5993" sat:ratio="1.0" completeness="0.1525" quality:index="1.0" precision="0.6011"/>

</category>
<category label="VP" features="VP" node:index="0:16:6">

<category label="VN" features="VN" node:index="0:16:7">
<category label="Aux" features="Vaii3s--" node:index="0:16:8" form="avait" lemma="avoir"/>
<category label="Verb" features="Vmps-smaip--" node:index="0:16:9" form="reu" lemma="recevoir"/>
<indices grammaticality="0.6201" sat:ratio="1.0" completeness="0.2105" quality:index="1.0" precision="0.6284"/>

</category>
<category label="NP" features="NP:OBJ" node:index="0:16:10">

<category label="Det" features="Ds3msp---" node:index="0:16:11" form="leur" lemma="leur"/>
<category label="Noun" features="Ncms--" node:index="0:16:12" form="accord" lemma="accord"/>
<category label="AP" features="AP" node:index="0:16:13">

<category label="Adj" features="Af-ms-" node:index="0:16:14" form="formel" lemma="formel"/>
<indices grammaticality="0.5851" sat:ratio="1.0" completeness="0.1176" quality:index="1.0" precision="0.5847"/>

</category>
<indices grammaticality="0.5981" sat:ratio="1.0" completeness="0.1525" quality:index="1.0" precision="0.6011"/>

</category>
<indices grammaticality="0.5871" sat:ratio="1.0" completeness="0.1111" quality:index="1.0" precision="0.5816"/>

</category>
<category label="Pct" features="Wd" node:index="0:16:15" form="." lemma="."/>
<indices grammaticality="0.6224" sat:ratio="1.0" completeness="0.2142" quality:index="1.0" precision="0.6302"/>

</category>

Figure 9: Example of tree enriched with grammaticality
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Abstract
We propose to annotate the French Treebank with semantic dependencies in the framework of DMRS starting from an annotation with
surface syntactic dependencies and using modular graph rewriting. This system has been experimented on the whole French Treebank
with the prototype which implements the rewriting calculus.

1. Introduction
We propose to produce a semantic annotation of large
corpora from an annotation with syntactic dependencies.
For the semantic annotation, we choose the framework
of DMRS (Dependency Minimal Recursion Semantics).
DMRS was introduced by (Copestake, 2009) as a compact
and easily readable equivalent to Robust Minimal Recur-
sion Semantics (RMRS), which was defined by (Copes-
take, 2007). This underspecified semantic formalism was
designed for large scale experiments without committing
to fine-grained semantic choices. DMRS graphs contain
the predicate-argument relations, the restriction of gener-
alized quantifiers and the mode of combination between
predicates. Predicate-argument relations are labelled argi,
where i is an integer following a fixed order of obliqueness
suj, obj, ats, ato, a-obj, de-obj. . . .
We have chosen DMRS because we aim at an annotation
which is readable and minimal. We want to avoid any com-
mitment to questionable linguistic choices. Moreover, the
DMRS structures are based on dependencies like our initial
syntactic structures, which makes the transformation easier.
Regarding the input corpora, there are very few French
resources syntactically annotated; the largest one is the
French Treebank. The French Treebank is a corpus of sen-
tences extracted from the newspaper “Le Monde”, which
are annotated with phrase structures (Abeillé et al., 2003).
These annotations have been converted into syntactic de-
pendencies (Candito et al., 2009) following a format de-
scribed in the guide designed for this task1. In our work,
we use this last corpus under the abbreviation FTB.
To compute the semantic structures, we use the framework
of graph rewriting (Bonfante et al., 2011), which is moti-
vated by the shape of the manipulated objects. The out-
put DMRS structures are graphs of semantic dependencies.
The input syntactic structures are often dependency trees
but to compute semantics, we need to complete these trees,
for instance with some syntactic arguments of infinitives or
some antecedents of pronouns determined by the syntax.
We obtain wholly general graphs, with cycles and vertices
that have several antecedents.
Term rewriting and tree rewriting can benefit from a canon-

1
http://alpage.inria.fr/statgram/frdep/fr_stat_dep_

parsing.html

ical definition, whereas no such definition exists for graph
rewriting. For our application, we have chosen an opera-
tional view of graph rewriting. A graph rewriting system
is defined as a set of rewrite rules. Given a rule, modifi-
cation of the graph (which correspond to the part usually
called “right-hand side” of the rule) is defined by means of
a set of commands; the control of the way the rule is applied
(usually called the “left hand-side”) uses pattern matching
as is done in a traditional graph rewriting setting.
In our modeling of the syntax-semantics interface, every
linguistic principle is translated into a few simple and read-
able rules. Since our ambition is to process large corpora, a
complete system can have several hundred rules. The more
rules, the more interaction between rules, and the consis-
tency of the whole rule system becomes difficult to main-
tain. This impinges on our ambition of a large coverage for
the grammar. To solve this problem, we propose to organize
rules in modules.
A module is a set of rules that is linguistically consistent
and represents a particular step of the transformation. There
is no order between rules inside a module but we fix the or-
der between modules according to linguistic criteria. Mod-
ules play a decisive role in the construction of a rewriting
system but they are also crucial for the efficiency of compu-
tations. The transformation of syntax into semantics is non
confluent by essence because the correspondence between
syntactic and semantic structures is relational and not func-
tional. With the use of modules, it is possible to restrict non
confluence to some particular modules.
Another original feature of our calculus is the way that it
makes the link between rules and lexicons. During the
syntax-to-semantics transformation, many rules have to be
controlled by lexical information; these rules are called lex-
ical rules. Of course, many rules differ only by lexical
information they contain; that’s why lexical rules can be
parametrized. Each lexical rule is associated with a lexi-
con, which provides a list of possible values for the param-
eters. Every time such a rule is applied, it is verified that
the values of input parameters given by the graph in which
the rule matches are present in the associated lexicon.
In our application, we use lexical rules for the detection of
syntactic subcategorization frames of verbs and the trans-
formation of syntactic arguments into semantic arguments.
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To build the lexicons associated with lexical rules, we ap-
peal to an external resource: Dicovalence (Van den Eynde
and Mertens, 2003). Dicovalence is a lexicon of French
verbs with more than 8000 entries. Each entry corresponds
to a particular meaning of a verb and it gives rich infor-
mation about its subcategorization frame. All entries have
been validated manually by linguists.
Our rewriting system is composed of 562 rules including
402 lexical rules and organized in 34 modules. In the rest
of the article, it is called SYNSEMFTB. Our calculus is
implemented in a prototype which was used to experiment
SYNSEMFTB on the whole FTB.
The plan of the article is the following: Section 2. presents
the main features of our graph rewriting calculus; the sys-
tem SYNSEMFTB of rules used for transforming the syn-
tactic annotation of the FTB into a semantic annotation is
described in Section 3. and finally Section 4. gives the re-
sults of the experimentation with the FTB.

2. The main features of the calculus
2.1. The rules
Each rule is composed of two parts: the template and the
commands. To explain each one, we consider a rule R
which is applied to a graph G:

• The template contains one positive pattern P and a
possibly empty set of negative patterns {N1, . . . , Nk}.
The positive pattern is a graph and each negative pat-
tern Ni is a graph extension2 of P . A rule can be ap-
plied if the positive pattern P match the graph G and,
for all negative graph extension Ni, the matching of P
into G fail to extend to a matching of P ∪Ni in G.

• The commands part of the rule describes atomic oper-
ations that are used to modify the graph G when the
rule R is applied. A command is defined relatively to
the positive pattern of the rule; it can be addition or
deletion of a node, an edge or a feature, merging of
two nodes . . . . Commands are executed in order and
then this order is relevant.

To illustrate our purpose, we consider the rule that trans-
forms the syntactic arguments into semantic argument for
the transitive verb confondre with an indirect object in-
troduced with the specific preposition avec ("confondre
X avec Y" translates to "mistake X for Y" ). We call it
suj_V_obj_pobj. Its positive pattern is represented
with the following diagram:

V
cat=v

lemma=confondre

OBJ PREP
cat=prep

lemma=avec

POBJ

obj obj
p_obj

The complete rule is encoded in the following way:

1 rule suj_V_obj_pobj {
2 match{

2A negative pattern can contain edges referring to nodes de-
fined in P ; formally, in negative conditions, we consider the graph
defined by the union of P ∪Ni.

3 V [cat=v, lemma="confondre"];
4 OBJ [];
5 objrel: V -[obj]-> OBJ;
6 PREP [cat=prep, lemma="avec"];
7 preprel:V -[p_obj]-> PREP;
8 POBJ [];
9 pobjrel:PREP -[obj]-> POBJ;

10 }
11 without{ V[dv=*] }
12 without{ V-[a_obj|de_obj|ato|ats]->* }
13 commands {
14 del_edge objrel; del_edge preprel;
15 del_edge pobjrel; del_node PREP;
16 add_edge V -[arg2]-> OBJ; add_edge V -[arg3]-> POBJ;
17 V.dv = 18300;
18 }
19 }

Lines 2 to 10 describe the positive pattern P of
suj_V_obj_pobj rule. Lines 11 and 12 describes two
negative patterns N1 and N2. The first one (N1 on line 11)
prevents the rule to loop indefinitely: if the node V has al-
ready a feature named dv, the rule application is blocked.
The second one (N2 on line 12) prevents the matched verb
to have other complements in the graph than a direct object
(OBJ here) and an indirect object (POBJ here). Lines 13 to
18 describe the commands of the rule, which replace the di-
rect object and indirect object dependencies with semantic
dependencies, removing the preposition. Line 17 is used to
record information about the lexical information used: in
our case, we use Dicovalence which gives an integer iden-
tifier to each entry; it can be useful to keep track of this
information.
Rule suj_V_obj_pobj applies to the following graph
representing the syntax of the sentence Claude confond
Pierre avec Maxime (Claude mistakes Pierre for Maxime).

Claude
np

confond
v

lemma=confondre

Pierre
np

avec
prep

lemma=avec

Maxime
np

suj obj obj

p_obj

The positive pattern of the rule matches with the part of
the graph in red and the two negative patterns fail to extend
this matching. Therefore, the rule applies and transforms
the graph into the following one:

Claude
np

confond
v

lemma=confondre
dv=18300

Pierre
np

Maxime
np

suj

arg2

arg3

If some rule application on G produces G′, we write G →
G′. If G rewrites to G′ with any number of rule applica-
tions, we write G→∗ G′.

2.2. Lexical rules
The rule presented above uses lexical information. If we
want to create a similar rule for every subcategorization
frame of every verb, the best is to start from an existing
lexicon of verbs. In our application to the FTB, we have
chosen Dicovalence. Of course, we want to factorize the
rules for different verbs which share the same subcatego-
rization frame. Consider again the case of transitive verbs
with an indirect object introduced with a specific preposi-
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tion. The rule suj_V_obj_pobj defined above can be
adapted to all transitive verbs with an indirect object in-
troduced with the preposition "avec". We can go one step
further and consider that the preposition is also a parameter
of the rule.
Thus, in order to avoid the increase in the number of
rules, we define parametrized rules. In addition to the
parametrization of the pattern, we also consider parameters
in commands. Parametrized rules allow:

• several parameters (prefixed with the symbol $ in rule
code) to be used in the positive and negative patterns
as input parameters;

• other parameters (prefixed with the symbol @ in code)
to be used in the commands as output parameters.

For instance, suj_V_obj_pobj rule is generalized into
the parametrized rule below by changing its head (lines 2
and 3 in blue) and the value of some features (lines 6, 9 and
20 in red):

1 lex_rule suj_V_obj_pobj
2 (feature $lemma, $prep, @dicoval_id;
3 file "suj_V_obj_pobj.lp")
4 {
5 match{
6 V [cat=v, lemma=$lemma];
7 OBJ [];
8 obj: V -[obj]-> OBJ;
9 PREP [cat=prep, lemma=$prep];

10 pobj1:V -[p_obj]-> PREP;
11 POBJ [];
12 pobj2:PREP -[obj]-> POBJ;
13 }
14 without { V [frame=*] }
15 without {V -[a_obj|de_obj|ato|ats]-> *}
16 commands {
17 del_edge obj; del_edge pobj1;
18 del_edge pobj2; del_node PREP;
19 add_edge V -[arg2]-> OBJ; add_edge V -[arg3]-> POBJ;
20 V=@dicoval_id;
21 }
22 }

This rule refers, on line 3, to an external file
(suj_V_obj_pobj.lp) which contains 151 entries
coming from Dicovalence and corresponding to the con-
cerned subcategorization frame. Each line of the file de-
scribes an entry: th<e lemma, the governed preposition and
the identifier in Dicovalence:

accommoder#avec##900
accorder#avec##1090
accoupler#avec##1305

...
confondre#avec##18300

...
troquer#contre##84610
voir#en##86390

The two first elements are the possible values of the in-
put parameters $lemma and $prep and the last one is the
value of corresponding output parameter @dicoval_id.
If the new suj_V_obj_pobj rule is applied to the previ-
ous graph representing the syntax of the sentence "Claude
confond Pierre avec Maxime", the positive pattern matches
in the same way but the matching entails the instanciation
of the input parameters: $lemma with "confondre" and
$prep with "avec".

Then, ones verifies that the suj_V_obj_pobj.lp file
contains the pair ("confondre","avec"). If it is the case, the
output parameter @dicoval_id is instantiated with the
corresponding value in the lexicon3.
All lexical informations extracted form Dicovalence are au-
tomatically transformed into a set of rules (379 currently),
each rule being associated with a file providing the possi-
ble instanciations of its parameters. When no directly us-
able resource exists, beginnings of lexicons have been built
manually. This is the case for the subcategorization frames
of adjectives and predicative nouns. This is also the case
for scopal adverbs and non intersective adjectives.

2.3. Modules
The interest of rewrite rules is that their effect is local but
it is a drawback if one considers the whole system of rules.
It can contain several hundred of rules and so, if all rules
are allowed to act in parallel, it is difficult to control their
interaction. That’s why the grouping of rules in modules
and the ordering of modules is crucial.
Modularity makes the design, the maintenance and the
adaptation of a rule system easier. A module is a set of rules
that is linguistically consistent and represents a particular
step of the transformation. For instance, in our proposal,
there is a module transforming the syntactic arguments of
verbs into their semantic arguments. Another module deter-
mines the semantic representation of attributive construc-
tions.
Formally, a module is a finite set of rules. A module has
the termination property, if for any graph G, there is no
infinite rewriting G → G1 → G2 → . . . starting from
G. In this work; all the modules we consider have the ter-
mination property. Given a module M , a graph G is said
to be a M -normal form if there is no rule in M that can
be applied to G. For a module with the termination prop-
erty, for any graph G, there is a finite number of M -normal
forms G′ such that G →∗ G′. A module is confluent if,
when G →∗ G1 and G →∗ G2, there is a graph G′ such
that G1 →∗ G′ and G1 →∗ G′. The most important con-
sequence of the confluence property is that it implies that
every graph has an unique normal form and hence only one
reduction path has to be computed; giving a much more
efficient implementation.
In our rewriting system, rules are organized in a totally or-
dered list of modules that are applied in turn. Each module
is applied to the list of normal forms of the previous mod-
ules. In the system presented in this article, there are 562
rules distributed between 34 modules. The global process
we implement is not confluent; nevertheless it is possible
to restrict the non-confluence to a small number of module:
26 of the 34 modules are confluent in our experiment.

2.4. Filters
Depending of the design of the module, normal forms for
the rewriting calculus may not be linguistically consistent
structures. For instance, consider the module that trans-
forms the syntactic arguments of verbs into semantic argu-

3To guarantee that the application of the rule is deterministic,
we assume that the relation between input and output parameters
in the lexicon file is functional.
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ments. After application of this module, some graphs may
still include syntactic dependencies. It can happen that an
intransitive verb remains with a direct object. Several rea-
sons can explain this situation: a wrong annotation of the
initial graph, a bad choice among the different uses of a
verb, the non detection of an impersonal construction . . .
To remove inconsistent normal forms, we have introduced
filters. A filter contains only a template (i.e. a positive pat-
tern and some negative ones), it has no command part. Fil-
ters are defined inside a module and they are used in a post-
processing step: among normal forms obtained with usual
rules of the modules, normals forms that contains a filter
template are removed. For instance, in the module trans-
forming the syntactic arguments of verbs into semantic ar-
guments, we have introduced a filter removing all graph in
which some syntactic argument remains.

2.5. Rewriting complexity
Every rule has to perform the matching of a graph with a
sub-graph of another graph. This problem in its whole gen-
erality is known to be NP-complete. Nevertheless, graph
rewriting is used here in particular conditions:

• rule patterns are very small;

• all patterns of a rule are connected;

• the number of edges going out of a given pattern vertex
is bounded (in our application, the bound is 4).

In these conditions, the matching of a rule with a graph is
linear in time with respect to the size of the graph.
Moreover, to describe the syntax-semantics interface of nat-
ural languages, a general mechanism of vertex creation is
not necessary. In fact, all vertices of the final structure are
predictable from the initial structure. It is expressed in the
rule definition in the following way: every vertex that is
created must be attached to a vertex present at the entrance
inside the module and it is possible to attach only a finite
number of new vertices to a given vertex.
In our system, it is possible to define a measure on graphs
which decreases proportionally to the square of the graph
size. Therefore in all confluent modules, every computation
runs in a time that is cubic with respect to the size of the
input graphs.
To summarize, the computation complexity is not due to
the chosen method, graph rewriting, but to the essence of
the problem to which it applies: the production of a se-
mantic representation from the syntax of a sentence. More
precisely, the main source of complexity is lexical ambigu-
ity.

3. The rewrite rule system
3.1. The organization of modules
The current SYNSEMFTB system is composed of 562 rules
including 402 lexical rules and organized in 34 modules.
Figure 1 presents the system of modules as a graph, in
which vertices represent modules and edges represent the
order in the execution of modules.
These modules are themselves grouped in 6 packages:

• INIT transforms the initial CONLL annotation in a for-
mat compatible with the rules computing deep syntax;

• VERB is dedicated to the normalization of the verbal
kernel: auxiliaries are deleted, transitive and pronom-
inal verbs are marked, their voice is recognized as the
active, passive or middle voice;

• SUJ is dedicated to the treatment of verb and adjective
subjects4;

• ARGV computes the deep syntactic arguments of verbs
by redistribution of surface arguments (transformation
of impersonal, causative, passive and middle construc-
tions) and by lexical determination of some infinitive
arguments;

• PRO normalizes the syntax of several pronouns and de-
termines the antecedent of relative and reflexive pro-
nouns;

• SEM computes the semantic relations between predi-
cates and individuals coming from the deep syntactic
dependencies between word lemmas.

The four packages VERB, SUJ, ARGV and PRO contribute
to the production of the sentence annotation with deep syn-
tactic dependencies. Hence they are gathered in the same
super-package DSYNT. Then, the rules of the package
SEM compute a semantic representation of sentences in the
DMRS format. Consider the following sentence:

(1) Jean
John

a pu
might

être
be

autorisé
allowed

à
to

partir
leave

et
and

à
to

regagner
return

son domicile.
home.

John has managed to be allowed to leave and to return
home.

Figure 2 illustrates the two step computations with sen-
tence (1):

• the initial annotation with surface syntactic dependen-
cies according to the annotation guide of the FTB,

• the annotation with deep syntactic dependencies re-
sulting from the application of the rules from INIT,
VERB, SUJ, ARGV and PRO packages,

• the semantic representation in the DMRS format after
execution of the rules from SEM package.

Even if the number of rules in the system is high, the effect
on the computation complexity is limited due to the shape
of rules. For every rule, the patterns are connected graphs.
These graphs are generally trees with a depth of 3, except
for 5 rules from ANT_REL_PRO module, in which the pat-
terns have two roots.
The main source of complexity comes from the non conflu-
ence of computations but non confluence is confined in 8
among the 34 modules5.

4 The systematic assignment of a subject to an adjective facil-
itates the subsequent treatment in a more uniform way.

5On Figure 1, they are represented with opaque ovals.
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Figure 1: Diagram of the module system

3.2. The grammatical coverage
The SYNSEMFTB system covers the most common gram-
matical phenomena in French related to the syntax-
semantics interface, except comparative constructions and
parenthetical expressions, which are very frequent in the
corpus. Regarding lexical informations, Dicovalence gives
a satisfying coverage for verbs but for the predicate nouns
and adjectives, we have written small lexicons.
As an illustration, here are some significant examples. Con-
sider causative constructions. In the FTB, a causative verb
is viewed as an auxiliary of the complement infinitive. This
infinitive is then the head of the verbal kernel and the gov-
ernor of all its arguments. Here is the annotation in depen-
dencies according to the FTB guide of the sentence "il fait
descendre le secrétaire":

Il
pro
/il/

fait
v

/faire/

descendre
v

/descendre/

le
det
/le/

secrétaire
n

/secrétaire/

aux_caus det
suj obj

As (Abeillé et al., 1997) shows it, this view is too simplistic
and does not take some aspects into account. In the example
above, "secrétaire" is the direct object of "descendre" but
it is ambiguous: if "secrétaire" is a person ["secretary"], it

can be the deep subject of "descendre" ["to go down"]; if
it is furniture ["secretaire"] or if "descendre" is used with
the meaning of ["to kill"], "secrétaire" is then the deep ob-
ject of "descendre". In order to distinguish the two read-
ings, SYNSEMFTB transforms the causative auxiliary into
a full verb, which makes possible to express the two read-
ings through the annotations below:

il
pro
/il/

faire
v

/faire/
causative

descendre
v

/descendre/
¬trans

le
det
/le/

secrétaire
n

/secrétaire/

suj obj det

sujp

il
pro
/il/

faire
v

/faire/
causative

descendre
v

/descendre/
trans

ε le
det
/le/

secrétaire
n

/secrétaire/

suj obj det
obj

sujp

In both diagrams above, a dependency representing the
deep subject of "descendre" has been introduced. In the
first one, this subject is "secrétaire" and in the second one,
it is not expressed in the sentence, which is represented with
an empty word denoted ε. In a general way, all surface syn-
tactic dependencies are represented over the text and the
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Jean
n

/Jean/

a
v

/avoir/

pu
v

/pouvoir/

être
v

/être/

autorisé
v

/autorise/

à
prep
/à/

partir
v

/partir/

et
cc

/et /

à
prep
/ à/

regagner
v

/regagner/

son
det

/son/

domicile
n

/domicile/

aux_tps aux_pass a_obj obj dep_coord obj det
suj obj coord obj

Jean
n

/Jean/

pouvoir
v

/pouvoir/
trans

autoriser
v

/autoriser/
trans

ε à
prep
/à/

partir
v

/partir/
¬trans

et
cc
/et/

à
prep
/à/

regagner
v

/regagner/
trans

le
det
/le/

domicile
n

/domicile/

lui
pro
/lui/

de
prep
/de/

.
ponct
/./

obj obj dep_coord obj deta_obj

coord obj

ponct

objpsujpmodp

deppobjp

sujp

sujp

Jean

n

domicile

n

regagner_qq

v
dv=69990

frame=suj_obj arg1

arg2

le

detrstr-h

de

prep

arg1

eq

pouvoir

v
frame=risingv
voice=active

autoriser_qq_à_qq

v
dv=9250

passive=standard

arg1 arg2

et

ccarg3

ε

arg1

partir

v
dv=59410
frame=suj

arg1

arg2

arg1
lui

pro

arg2

Figure 2: Surface syntax, deep syntax and semantics for the sentence "Jean a pu être autorisé à partir et à regagner son
domicile".

deep (syntactic and semantic) dependencies are drawn un-
der the text. Deep syntactic dependencies have a label end-
ing with "p" (sujp, objp, . . . ) to be distinguished from sur-
face syntactic dependencies.
Rising verbs are dealt with in the FTB like full verbs in the
same way as control verbs. However there are good rea-
sons (Rooryck, 1989) to consider them as hybrid objects
which sometimes behave as auxiliaries. Consider the fol-
lowing examples where rising verbs are written in bold and
their complement infinitives are underlined:

(2) Il
It

peut
may

arriver
arrive

deux
two

personnes
persons

aujourd’hui.
today.

‘Two persons may arrive today.’

(3) La
The

maison
house

peut
may

être vendue
be sold

aujourd’hui.
today.

(4) La
The

maison
house

peut
may

se
itself

vendre
sold

aujourd’hui.
today.

‘The house may be sold today.’

They successively illustrate an impersonal construction, a
passive and a middle voice. To avoid the increase of the
number of rules computing the semantic arguments, it is
necessary to transform every construction into a canonical
construction. Usually the canonical construction is the per-
sonal construction in the active voice. For the three previ-
ous examples, we obtain:

(2’) Deux
Two

personnes
persons

peuvent
may

arriver
arrive

aujourd’hui.
today.

(3’), (4’) On
One

peut
may

vendre
sell

la
the

maison
house

aujourd’hui.
today.

The rewrite rules used for this transformation are made sim-
pler if the rising verbs are dealt with as auxiliaries. Then,
the same rules as for verbs not depending on rising verbs
can apply. Let us describe the method on example (2). Here
is the initial annotation given by the FTB guide.

Il
pro
/il/

peut
v

/pouvoir/

arriver
v

/arriver/

deux
det
/deux/

personnes
n

/personne/

aujourd'hui
adv

/aujourd'hui/

suj obj det
obj

mod

A first rule transforms the rising verb "pouvoir" into an aux-
iliary of "arriver" which becomes the sentence head.

il
pro
/il/

pouvoir
v

/pouvoir/
trans

arriver
v

/arriver/
¬trans

deux
det
/deux/

personne
n

/personne/

aujourd'hui
adv

/aujourd'hui/

obj det
obj

mod

modp
sujp

As the dependency structure is not restricted to be a tree,
more expressive power is available. So the verb "pouvoir"
keeps "arriver" as its object while being a modifier of it,
which produces a cycle in the graph. As a consequence, the
sentence head is no longer a tree root but it remains the dis-
tinguished vertex which is aimed at receiving any external
dependency, especially when the sentence is inserted as a
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subordinated clause into another complex sentence.
After the transformation, the impersonal construction can
be processed as any impersonal construction because it is
anchored to the verb "arriver". A rule aims at recovering
the corresponding canonical construction. It removes the
impersonal subject and the surface object becomes the deep
subject of the verb. Hence, the resulting annotation:

pouvoir
v

/pouvoir/
trans

arriver
v

/arriver/
¬trans

impersonal

deux
det
/deux/

personne
n

/personne/

aujourd'hui
adv

/aujourd'hui/

obj det
mod

modp sujp

3.3. Module Ordering
The organization of rewrite rules in modules is insepara-
ble from the definition of a partial execution order for the
modules. This order is determined by linguistic and rep-
resentation choices. For instance, the module dedicated to
impersonal constructions precedes the module dedicated to
the passive voice so that impersonal passive constructions
can be processed correctly.
Some cases may be very complicated. Consider the follow-
ing examples:

(5) Jean
John

est
is

autorisé
allowed

à
to

arriver
arrive

plus tard.
later.

(6) Jean
John

demande
asks

à
to

Marie
Mary

d’être accompagnée
to be accompanied

par
by

sa
her

fille.
daughter.

In every sentence above, a verb in bold controls the sub-
ject of an infinitive which is underlined. For sentence (5),
the module redistributing the passive construction, denoted
PASSIVE_ARG, must apply first to produce the following
canonical construction:

(5’) On
One

autorise
allows

Jean
John

à
to

arriver
arrive

plus tard.
later.

Then, the module determining the subject of infinitives de-
pending on control verbs, denoted INF_SUJ, can apply. In
this module, a lexical rule indicates that the subject of "ar-
river" is the direct object of "autorise".
For sentence (6), it is the contrary. Module INF_SUJ must
be applied first to find that the subject of "être accompa-
gnée" is the indirect object of "demande". Then, module
PASSIVE_ARG is applied to transform the passive voice into
the active voice:

(5’) Jean
John

demande
asks

à
to

Marie
Mary

que
that

sa
her

fille
daughter

l’
her

accompagne.
accompanies.

John asks to Mary that her daughter accompanies her.

Hence, in the order of module application, is present the se-
quence PASSIVE_ARG, INF_SUJ and again PASSIVE_ARG,
as diagram 1 shows it.
Coordination is very specific and cannot be dealt with as
most syntactic constructions within a particular module,
which would be inserted somewhere in the module order-
ing graph. It allows sharing between structures and thus in-
teracts with other syntactic constructions. This interaction
is modeled with rules which are distributed between the
different modules computing the deep syntax. Of course,
these rules depend on the choice made for annotating coor-
dination in the FTB; in particular, imposing the dependency
structure to be a tree has strong consequences. So, the shar-
ing of structures frequently introduced by coordination can-
not be expressed because it needs that two dependents share
the same governor. Rules of SYNSEMFTB are dedicated
to recovering sharing between coordinated structures. De-
pending on whether the shared structure is the subject of a
verb, a passive or tense auxiliary or the antecedent of a rel-
ative pronoun, the phenomenon is respectively dealt with
in the module introducing subjects (SUJ_INTRO), remov-
ing auxiliaries (VERB_AUX), or finally determining the an-
tecedent of relative pronouns (ANT_REL_PRO).
The sharing of complements is more difficult to deal with
because some complements may be optional, which makes
the annotation of the FTB ambiguous. Consider the follow-
ing sentence annotated according to the FTB guide.

(7) Jean
John

a
has

déballé
unpacked

et
and

mangé
eaten

son
his

sandwich.
sandwich.

Jean
n

/Jean/

a
v

/avoir/

déballé
v

/déballer/

et
cc
/et/

mangé
v

/manger/

son
det
/son/

sandwich
n

/sandwich/

aux_tps coord dep_coord det
suj obj

objp

The objp dependency under the sentence must be added
to express that "sandwich" is shared by "déballé" and
"mangé". Unfortunately, the FTB does not allow such a de-
pendency because "sandwich" would have two governors,
which violates the treeness constraint on the dependency
structure. Therefore, it is not possible to distinguish the
sentence in which "son sandwich" is shared, from sentence
"Jean a déballé son sandwich et mangé" if one merely takes
the dependency structure into account. Only the linear or-
der between words allows the distinction. In SYNSEMFTB

we have chosen to leave this problem aside provisionally.

4. Experimental results
The SYNSEMFTB module system has been applied to the
12 351 sentences of the FTBwith the GREW6 software.
Complete statistics about the rule use by module on the
whole corpus and detailed results (with the produced struc-
tures) on 1% of the corpus are available online7.
Since computations are not confluent, we are interested first
in the number of normal forms produced for each input sen-

6
http://grew.loria.fr

7
http://wikilligramme.loria.fr/doku.php?id=lrec2012
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aff arg dep aux_caus aux_tps aux_pass comp coord dep_coord det
1581 465 32821 128 3806 1672 37 6358 7299 40355

0 366 2240 5 26 15 37 194 1205 597
0,0% 78,7% 6,8% 3,9% 0,7% 0,9% 100,0% 3,1% 16,5% 1,5%
mod mod_rel ponct suj obj a_obj de_obj p_obj ato ats

58353 2352 35810 15100 58132 2192 1668 1663 160 2521
13914 407 10598 158 3127 15 23 4 15 15
23,8% 17,3% 29,6% 1,0% 5,4% 0,7 % 1,4% 0,2% 9,4% 0,6%

Table 1: Dependency types processed by the SYNSEMFTB rewriting system

tence. On one hand, long sentences can be highly ambigu-
ous. On the other hand, filters at the end of some modules
can discard an important number of inconsistent annota-
tions. Some sentences may even have no normal form; it
is the case for 16.0% of the sentences. For 33.1% of the
sentences, the system returns one normal form, for 20.6%,
it returns two normal forms. 92.3% of the sentences lead to
a number of normal forms that is less than or equal to 8.
To estimate the coverage of the SYNSEMFTB system, we
have observed the number of dependency types that are
present in the FTB and that are ignored in the rewriting pro-
cess. Table 1 shows the number of dependencies present in
the resulting annotation with respect to the number present
in the initial annotation for every dependency type and for
the sentences having one normal form at least.
It is difficult to distinguish the cases coming from an
annotation error from the cases that are not covered by
SYNSEMFTB. Nevertheless, for dependency types having
more than 5% of occurrences remaining at the end, we can
give some comments. Since comparatives are not dealt with
by SYNSEMFTB, the comp dependencies are not rewritten.
Punctuation dependencies related to parenthetical expres-
sions are not dealt with too. The remaining mod dependen-
cies mainly concern nouns modifying nouns or verbs and
the remaining mod_rel often correspond to relative clauses
in which the head verb is missing. For coordination, it is not
rare to find several dep_coord dependencies starting from
the same governor, which is an annotation error. dep depen-
dency type is underspecified and used in various contexts,
which are not all predicted by the FTB annotation guide.
Finally, we are interested in the use of Dicovalence in
the rewriting of the FTB. The FTB contains 39 104 verbs
and the sentences having at least one normal form contain
29 782 verbs. For these sentences, we find 17 542 verbs as-
sociated with a Dicovalence entry in the final annotation.
It represents 58.9% (17 542 out of 29 782) of the rewritten
verbs and 44,9% (17 542 out of 39 104) of all verbs.
We have studied the inconsistency cases in a precise way on
the 1% of the corpus that is available online. It is composed
of 120 sentences and 12 of them lead to no normal form.
For 5 of them, Dicovalence does not describe the needed
subcategorization frame: "hispaniser" transitive,"acheter"
with indirect object and without direct object,"maintenir"
with locative complement,"souscrire" in its transitive use
and "vendre" in its intransitive use. Other cases correspond
to annotation errors.

Conclusion
Through the example of the FTB, we have shown that graph
rewriting is relevant for the automatic annotation of large

corpora with semantic dependencies starting from surface
syntactic dependencies.
Modules play a major role in the rewriting system both for
controlling computations and maintaining the global con-
sistency of the system. SYNSEMFTB has been designed ac-
cording to particular input and output formats, but the mod-
ularity of the system allows its adaptation to other formats
at minimal cost. The fact that the module PASSIVE_ARG is
used twice in the list of modules is not satisfactory. We can
imagine sentences where it must be used more and it sug-
gests to enrich the strategy language with the possibility to
apply iteratively a sequence of modules until a fixpoint is
reached; we leave this for further work.
Regarding the specific application to the FTB, the result-
ing annotation presents two main limits: the initial annota-
tion contains many errors and the formal framework chosen
for semantic annotation, DMRS, offers no solution for the
modeling of some semantic properties (intentionality, com-
paratives, . . .). We hope to push the first limit by using
graph rewriting for correcting the most systematic errors.
The solution to the second limit depends on advances in
formal semantics.
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Abstract
Increases in the number and size of treebanks, and the complexity of their annotation, present challenges to their exploration by the
research community. Adhering to different formalisms, lacking clear standards, and requiring specialized search and visualization and
other services, treebanks have not been widely accessible to a broad audience and have remained underexploited. The INESS project
is providing the first infrastructure integrating treebank annotation, analysis and distribution, bringing together treebanks for many dif-
ferent languages, spanning different annotation schemes and including parallel treebanks. The infrastructure offers a uniform interface,
interactive visualizations, leading edge search capabilities and high performance computing.

1. Introduction
Treebanks have without any doubt become one of the most
powerful kinds of language resources. Parsers with proba-
bilistic components trained on treebanks are now regarded
as indispensable for wide coverage analysis and are there-
fore a prerequisite for realistic applications such as high
quality syntax-based machine translation. Moreover, tree-
banks have a potentially wide user group including also gen-
eral linguists and language scholars, but these groups still
face obstacles in accessing the knowledge embedded in the
resources.
The Penn Treebank (Marcus et al., 1993) has been influen-
tial as a standard resource and benchmark during the past
couple of decades. Treebanks have been developed for a
large number of languages, they have become larger in size,
and their linguistic annotation is becoming richer, although
treebanks with highly detailed syntactic and semantic anal-
yses are still scarce. The field has some de facto standards
for simple treebank formats but lacks comprehensive tech-
nical and organizational solutions for handling the variety of
different formalisms, annotation standards and encodings.
Furthermore, the produced treebanking resources and tools
are scattered on many sites, each with their own access poli-
cies and formats, and some lack curation and archiving poli-
cies. By way of example, wemention the German Tiger cor-
pus and the TigerSearch tool which are potentially very use-
ful but are no longer maintained by the creators.
An open infrastructure for the curation and dissemination
of treebanks is therefore a timely goal. By ‘infrastructure’
we mean a persistent, integrated and managed set of ser-
vices combining data and tools. By ‘open’ we mean that the
system is not limited to a narrow set of data or users, that
any researcher in principle can deposit, access and process
data. In establishing such open infrastructures, we are mov-
ing from passive repositories towards online eScience lab-
oratories which are easy to access and can address a variety
of user needs.
Some usage scenarios of very large treebanks have been ex-
plored in the Dutch LASSY project, which has produced
huge parsed corpora (van Noord, 2009). One such scenario
relates to an investigation of conditions on extraposition, a

construction where a constituent is discontinuous (cf. the
English example The question [is raised] why the govern-
ment does not fund more research). Since it is difficult to
find hard rules governing the conditions under which ex-
traposition can apply, an empirical investigation may be in
order. However, such an investigation will hardly be pos-
sible in plain text corpora, not even in corpora tagged with
parts of speech. Crucially, only a syntactically analyzed cor-
pus provides the required level of detail that allows a sys-
tematic search with reliable results, as convincingly demon-
strated by van Noord (2009). Enabling linguists and other
users to address such questions in a user-friendly way across
treebanks with different annotations and for different lan-
guages, but using a single access point, is a worthwhile goal.
Building a high quality treebank always requires a big in-
vestment, as human contributions in the form of linguistic
insight and manual quality control are indispensable in ad-
dition to automatized procedures. It is therefore important
to get a high return on investment by securing the usability
of the finished treebank. More and more attention is being
paid to archiving and disseminating treebanks, with appro-
priate documentation and licenses. Some approaches are il-
lustrated by the Prague Dependency Treebank (Hajič, 1998;
Böhmová et al., 2003) and the Icelandic Parsed Historical
Corpus (IcePaHC) (Wallenberg et al., 2011). The former is
distributed by the LDC and browsable on the web, has a
bespoke license, and is searchable with an downloadable
application (TrEd 2.0) as well as through a client-server
application (Netgraph). IcePaHC is archived with version-
ing, has direct open download links, is released under a
LGPL licence and is searchable with the downloadable Cor-
pusSearch 2. Neither is fully accessible through web-based
services from a browser.

2. INESS
The INESS project1, running from 2010 to 2015, is proba-
bly the first large scale project aimed at building an eScience
infrastructure for the exploration of syntax and semantics
based on treebanking, with a wide range of resources and

1Infrastructure for the Exploration of Syntax and Semantics,
http://iness.uib.no
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services. This infrastructure has been operational on an ex-
perimental basis since 2010 and has been steadily expanded
and adapted. It is not only the project’s aim to make it easy
for the R&D community to find, filter and download tree-
banks, but also to let the community actively participate in
uploading and annotating treebanks. Furthermore, one of
our goals is to provide a more uniform treatment of tree-
banks so that they can be linked and explored in similar
ways.
The most general characteristic of the INESS infrastructure
is that its services are fully accessible through any modern
web browser, without the need to download and install any
other software on the user’s platform. The server middle-
ware was written in Common Lisp on top of an open source
web server in the same language.2 The use of the same high
level programming language throughout the whole system
has resulted in a highly flexible system in which all anno-
tation and analysis services are seamlessly integrated. The
system is easy to modify at all levels, which promotes a fast
evolution in response to user needs. Visualizations are based
on Scalable Vector Graphics (SVG), which is supported by
modern web browsers. The remainder of this article will
present the status of the INESS infrastructure.

3. Selection of treebanks
While the INESS project is partly devoted to developing
a large treebank for Norwegian, the infrastructure is open
to hosting any other treebanks which may be useful in re-
search. Currently the INESS middleware can handle LFG,
constituency and dependency treebanks in various formats.
INESS invites treebanking projects to deposit their tree-
banks in the infrastructure in order to make them accessi-
ble, and it currently provides access to 53 treebanks, rang-
ing from small test suites to full size treebanks. This steadily
growing number has made it necessary to provide a search
interface at the metadata level. The user can make a choice
of treebanks by selecting values for the following criteria:

• Language: All · Norwegian Bokmål (11) · German (6) ·
Georgian (5) · Hungarian (4) · Latin (4) · Church Slavic
(3) · Ancient Greek (to 1453) (3) · Icelandic (2) · North-
ern Sami (2) · Wolof (2) · Classical Armenian (2) ·
Abkhazian (1) · Danish (1) · Estonian (1) · Gothic (1)
· Norwegian Nynorsk (1) · Swedish (1) · Tigrinya (1) ·
Turkish (1) · Urdu (1)

• Collections: All · GeoGram (3) · HunGram (4) ·
IcePaHC (1) · NorGram (8) · PROIEL (13) · Sofie (8)
· Test (5) · TiGer (3) · XPar (3)

• Annotation types: All · lfg (30) · dependency-proiel
(13) · constituency (8) · dependency-cg (2)

For the languages, ISO-639-3 codes are internally used.
The annotation types currently distinguish between the fol-
lowing: lfg (Lexical Functional Grammar); dependency-
proiel, a dependency annotation used in the PROIEL
project,3 based on dependency grammar enriched with sec-
ondary dependencies reminiscent of the structure sharing

2AllegoServe, http://allegroserve.sourceforge.net/.
3http://www.hf.uio.no/ifikk/english/research/

projects/proiel//

mechanism in LFG; constituency, which provides simple
phrase structure constituency; and dependency-cg, based on
Constraint Grammar.
Collections are loosely defined groups of treebanks based
on similar texts or on similar grammars used in the anal-
ysis. For instance, GeoGram is a collection of materials
parsed with the same Georgian grammar while HunGram
is a collection parsed with the same Hungarian grammar.
Sofie is a collection based on text from the novel Sofies ver-
den [Sophie’s World] (Gaarder, 1991) and its translations,
but parsed with different grammars, an action initiated by
the Nordic Treebank Network (Nivre et al., 2005). The par-
allel Sofie treebanks were collected, catalogued and aligned
in cooperation with the META-NORD project.4.
According to the user’s choices, a list of treebanks is pre-
sented. The resulting list is the intersection between the val-
ues for the three criteria; however, each criterion allows
multiple values of which the union is taken. For instance,
choosing both the NorGram and Sofie collections selects all
treebanks from both collections. This is illustrated in Figure
1 where these chosen NorGram and Sofie collections are in
boldface. Furthermore, in this example Norwegian Bokmål
is selected as the language, which means that only Norwe-
gian treebanks are chosen from these collections. The cho-
sen annotation type in this case was All. Because all tree-
banks chosen in this way are of type lfg or constituency,
these are also automatically marked in boldface.
In the future, it will also be possible to select treebanks
based on metadata attributes such as owner, licensing con-
ditions, etc.

4. Visualization
Visualization is a nontrivial need for the exploration of
highly detailed treebanks. Once a treebank is selected, its
sentences are listed on the Sentence Overview page. Click-
ing on a sentence shows its structure by means of visual-
izations dependent on the annotation formalism as well as
user preferences. For instance, the same German sentence
from the Sofie constituency treebank can be visualized with
a traditional tree structure as in Figure 2 or with Tiger-style
horizontal and vertical lines as in Figure 3.
Structures in the LFG formalism are well supported through
the integration of the LFG Parsebanker tool (Rosén et al.,
2009), originally developed in the TREPIL project for the
construction and exploration of LFG parsebanks. LFG tree-
banks are highly detailed and contain several levels of
representation such as c-structures (constituent structures)
and f-structures (functional structures, feature-value ma-
trices). These structures are juxtaposed in the interface,
with mouse-over highlighting to indicate corresponding el-
ements in both structures. This is illustrated in Figure 4,
where placing the cursor at PROPP in the c-structure causes
highlighting of the value of the TOPIC feature in the (sim-
plified) f-structure.
Parallel treebanks are visualized by displaying structures for
aligned sentences in different languages next to each other.
In Figure 5, German and Swedish constituency structures

4http://www.meta-nord.eu, under the umbrella of META-
NET and linked to META-SHARE
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Figure 1: Screenshot of the treebanks selection interface

are juxtaposed. Phrase-aligned treebanks are also catered
for, thanks to amethodology developed in the XPAR project
(Dyvik et al., 2009). An example of phrase-aligned c- and
f-structures in Georgian and Norwegian is given in Figure
6.

5. INESS-Search
Powerful tools for interactively searching and filtering tree-
banks are of primary importance in a treebanking infra-
structure. The query syntax should be expressive in order to
cater to a variety of research needs and the implementation
should be efficient for a fast turnaround when searching a
very large treebank. Furthermore, a search tool should be as
simple and uniform as possible across different annotation
types.
Currently a number of corpus search tools support search-
ing and viewing of treebanks, such as CorpusSearch 2,5
TrED 2.0,6 and TIGERSearch.7 They have a query language
adapted to syntactic annotation in certain formats. TIGER-
Search also includes a graphical query building interface.
An overview of treebank query systems can be found else-
where (Lai and Bird, 2004). Most search and viewing tools
need to be downloaded and installed on the user’s machine.
TIGERSearch, which is no longer maintained, has been
reimplemented as INESS-Search in Common Lisp, its func-
tionality has been expanded, its query language has been

5http://corpussearch.sourceforge.net/
6http://ufal.mff.cuni.cz/tred/
7http://www.ims.uni-stuttgart.de/projekte/TIGER/

TIGERSearch/oldindex.shtml (Lezius, 2002)

made simpler and it has been integrated into the INESS
web interface. INESS-Search can be used to query con-
stituency and dependency treebanks, but it also contains ex-
tensions which are necessary for querying LFG f-structures,
which are directed, possibly cyclic graphs rather than trees.
An evaluation of INESS-Search against TIGERSearch and
some other treebank search systems based on the TIGER
treebank shows that the former is as fast or significantly
faster on most types of queries (Meurer, 2012 forthcoming).
Whereas the expressive power of TIGERSearch merely
equals that of the existential fragment of first-order pred-
icate logic over node variables (all node variables are im-
plicitly existentially quantified), INESS-Search implements
full first-order predicate logic. Its implementation in Com-
mon Lisp is seamlessly integrated in the infrastructure and
it can therefore be used via a web interface in a straightfor-
ward way. This tight integration also means that search can
be dynamic, i.e. changes in the treebank are immediately ac-
cessible to the search mechanism. This is particularly useful
during the construction phase of the treebank when changes
are frequent.
A graphical query construction tool has not been developed
for INESS-Search since the query syntax is compact and
intuitive enough (after some practice) to make such a de-
vice unnecessary. Moreover, it would be difficult to expose
the full query syntax (including negation, disjunctions and
quantifier scoping) in an elegant, easy-to-use graphical tool;
implementing only the easier parts of the query syntax (like
the existential fragment) would unneccessarily restrict the
user to a less expressive subset of the language.
A mechanism for displaying and exporting search results in
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Figure 2: Screenshot of a constituent visualization, tradi-
tional branches

Figure 3: Screenshot of a constituent visualization, TIGER
style branches

a flexible way is currently under development.
We may consider a few query examples. If one wants to
find all sentences containing NPs that immediately domi-
nate APs, the TIGERSearch expression in 1 can be used to
that effect.

(1) [cat =“NP”] > [cat = “AP”]

In INESS-Search one may also use query 1, but the abbre-
viated syntax in 2 has the same results.

(2) NP > AP

If one wants to find all sentences containing NPs that im-
mediately dominate APs that in turn immediately dominate
PPs, variables are needed in TIGERSearch, as illustrated in
3.

(3) [cat = “NP”] > #x:[cat = “AP”] & #x > [cat = “PP”]

In INESS-Search the simplified expression in 4 has the
same results as 3.

(4) NP > AP > PP

One result from this search in the Tiger treebank is shown
in Figure 7, where the categories in the search expression
are highlighted in red.
The query intentions in the examples in 5 are not express-
ible in TIGERSearch due to the lack of universal quantifi-
cation.8

(5) Q2: Find sentences that do not include the word
“saw”.
Q5: Find the first common ancestor of sequences of a
noun phrase followed by a verb phrase.

The examples in 6 are INESS-Search queries expressing the
intentions in the examples in 5.

(6) Q2: !(#x:“saw” = #x)
Q5: #c >∗ #n:NP !>∗ #v & #c >∗ #v:VP !>∗ #n

& !(#c >∗ #x >∗ #n & #x >∗ #v & #n .∗ #v)

As a convention, variables like c, v, and n in example 6 Q5
that occur in positive contexts are treated as existentially
quantified, whereas variables like x in Q2 and Q5 that only
occur in negated contexts are taken to be universally quan-
tified and in the scope of all existential quantifiers.
A variable occuring in a positive context can be explicitly
marked as universally quantified by using ‘%’ as the vari-
able marker instead of ‘#’. In case the intended quantifier
scoping deviates from the default, the scoping order can be
given explicitly, as illustrated in query example 7 to search
for all sentences where each NP dominates an N:

(7) (%x #y): %x:NP > #y:N

8Queries Q2 and Q5 are taken from Lai and Bird´s survey of
treebank query systems (Lai and Bird, 2004), where they list typ-
ical queries that a query system should be able to express. Admit-
tedly, the results of Q2 would be rather uninteresting to many.
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Figure 4: LFG c-structure and corresponding f-structure with mouse-over highlighting

Several operators have been implemented that allow for
conveniently querying more complex tree node or f-
structure constellations. A rule operator can be used for
specifying parent–children constellations (e.g., 8). Opera-
tors specifically tailored to LFG structures are a projection
operator, an extended-head operator, and regular expres-
sions over f-structure attributes (e.g., 9).

(8) #c→ AP .∗ PP

(9) #f >(TOPIC & XCOMP* OBJ) #g

In addition, functionality for querying parallel treebanks
(Dyvik et al., 2009) is being further developed.

6. Interactive annotation
INESS offers advanced tools for the online interactive con-
struction of treebanks, in particular LFG treebanks. The
LFG Parsebanker tool (Rosén et al., 2009) was developed
for this purpose. It was inspired by the [incr tsdb()] envi-
ronment (Bender et al., 2011), a further development of the
TSNLP methodology (Oepen and Flickinger, 1998), which
supports annotation and grammar development through test
suite management and regression testing. Our approach to
treebanking has much in common with the approach advo-
cated there, with the parsed corpus itself constituting part of
the grammar development tool. But whereas their approach
is mostly applied to HPSG grammars, ours is specialized for
LFG grammars.
The LFG Parsebanker has been fully integrated into the
infrastructure and offers the following workflow:

• A corpus is batch parsed with XLE (Maxwell and
Kaplan, 1993; Kaplan et al., 2002) and all analyses
(packed) are stored.

• For each sentence, discriminants are computed (Rosén
et al., 2007) and presented to the annotator for disam-
biguation, as illustrated in Figure 8.

• The annotator’s choice of discriminants is applied to
the parse result and the remaining structures are dis-
played. This process can be repeated until the sentence
is disambiguated.

• The chosen discriminants are stored; they can be un-
done by the annotator or automatically reapplied after
reparsing.

Furthermore, a system for comments and issue tracking is
provided to further assist in grammar development. Statis-
tics are kept to measure discriminant frequencies and inter-
annotator agreement. An integrated web-based parsing plat-
form, the XLE-Web interface (Rosén et al., 2005), allows
interactive parsing of sentences entered by the user. The
infrastructure thus offers a complete online environment
for the construction of LFG treebanks, without the need to
download and install any software. This setup is currently
being used to construct a number of LFG treebanks online
for different languages, including a large Norwegian tree-
bank.

7. Conclusion and future work
Treebanks are potentially highly useful, but high quality
treebanks are very expensive to construct. Therefore long
term archiving, curation and dissemination of these re-
sources needs attention in order to maximize their exploita-
tion in R&D. On the one hand, many treebanking projects
produce very useful results but their dissemination is of-
ten limited to a particular treebank or type of treebank. On
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Figure 5: Parallel display of German constituency and
Swedish dependency structures: Sie hatten sich über
Roboter unterhalten. / De hade pratat om robotar.

the other hand, current open infrastructures for language re-
sources and tools, such as META-SHARE and CLARIN,
aim at building large catalogs and target large user groups,
but they do not offer specific middleware or services needed
for the construction and exploration of treebanks. INESS in-
tends to fill this gap.We have in this paper presented a status
report for this infrastructure.
INESS offers an expanding number of services for a steadily
increasing number of treebanks, placing unprecedented em-
phasis on usability, on powerful search and analysis, and on
advanced visualization. INESS intends to be an open infra-
structure: it invites the participation of other treebanking
projects and is currently negotiating with partners to set up
mirrors of the infrastructure. By establishing common ac-
cess, exploration and visualization of various treebank types
through a uniformweb-based interface, the threshold for ac-
tually using treebanks is lowered for a potentially large au-
dience of users.
Currently, the user base of INESS is still limited. In the past
year, the infrastructure has been tested mostly by internal
users, and feedback has resulted in several improvements to

the user interface. A more extensive, systematic user eval-
uation is scheduled for 2013. It is our goal that eventually,
users with even a minimal linguistic background will con-
sult treebanks in INESS almost as easily as they consult a
dictionary or grammar book. We also believe that grammar
teaching materials will eventually link to treebanks.
Building on our experiences so far, we envisage that INESS
will soon provide web services for many treebanks, in-
cluding a large treebank for Norwegian with unprecedented
detail which is presently being constructed. As the infra-
structure is scaling up, syntactic analysis and search must
run on high-performance computing platforms in order to
have an acceptable turnaround, especially when repars-
ing (and redisambiguating) an entire corpus with a new
grammar version. Furthermore, treebanks need consider-
ably more storage space than corpora annotated at word
level only, especially when all analyses of each sentence
are stored and discriminants are cached. The INESS infra-
structure therefore runs on a 128-coreHPC cluster using fast
disk access and high-speed internal networking (cf. Figure
9). In its next phase, it will also use national eInfrastructure
facilities.
Although the INESS infrastructure is fully operative, fur-
ther research will allow its evolution in response to new
requirements and technologies. Areas of special attention
are the search and visualization middleware and the inter-
face and user profiles. In particular, visualization of large
structures is a daunting challenge. On the one hand, large
screens with high resolutions are desirable physical media.
On the other hand, there will be a need for continued re-
search on innovative visualization, which may draw on ex-
periences with visualization of large, complex structures in
other fields.9
Access to the INESS resources and services is as yet on
the basis of ad hoc usernames, while some treebanks are
fully open. Current work is aimed at improved handling of
licenses and metadata (in cooperation with META-NORD
and CLARIN) and the integration of federated authentica-
tion and authorization, allowing users from several affilia-
tions to log in with their local user name. Tests of federated
user authentication were recently successfully concluded,
using an interface to the Norwegian national FEIDE feder-
ated ID provider through a SAML 2.0 protocol (Uninett,
2010). Once a trust mechanism for authenticating users
from other locations is in place, users will be able to cre-
ate profiles, define preferences and store search expressions
for future use. Users will also be able to upload and parse
‘private’ treebanks, even if sharing of treebanks is highly
encouraged.
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Figure 6: Parallel display of Georgian and Norwegian c-structures and f-structures

Figure 7: Search example: a solution for NP > AP > PP

Figure 8: Discriminants for the ambiguous German sen-
tence Peter liebt Maria.
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Abstract  

This paper reports about  efforts on building a parallel treebank for a typologically dissimilar language pair, namely German and 

Georgian. The project aims at supporting interdisciplinary collaboration in the field of jurisprudence adding a Natural Language 

Technology (NLT) angle to the human translation issue. The objective of the project is  development  of  a  bilingual Treebank which  

will  be  based  on a linguistically annotated and syntactically parsed German-Georgian parallel  legislative text corpus. 

   

 

1. Introduction 

Parallel corpora are language resources that contain texts 

and their translations, where the texts, paragraphs, 

sentences, and words are linked to each other. In the past 

decades they became useful not only for NLP 

applications, such as machine translation and multi-lingual 

lexicography, but are considered also very useful for 

empirical language research in contrastive and translation  

studies. 

Naturally-occurring text in many languages are annotated 

for linguistic structure. A Treebank is a text corpus in 

which each sentence has been annotated with syntactic 

structure. Treebanks are often created on top of a corpus 

that has already been annotated with part-of-speech tags. 

The  annotation can vary from constituent to dependency 

or tecto-grammatical structures. In turn, Treebanks are 

sometimes enhanced with semantic or other linguistic 

information and are skeletal parses of sentences showing 

rough syntactic and semantic information. 

Treebanks have become valuable resources as repositories 

for linguistic research. They can be used in translation 

studies, in corpus linguistics for studying syntactic 

phenomena, in computational linguistics as evaluation 

corpora for different NLT  systems or for training and 

testing parsers. 

In this paper, we describe our work on building a parallel 

Treebank for a typologically dissimilar language pair, 

namely German and Georgian, where the sentences in 

each language involved are syntactically analyzed, and 

sentences and words are aligned. 

 

2. Data for experiment 
 

For  the low-density  languages,  including  Georgian,  

parallel texts are  very  rare,  if  at  all  existent. The 

parallel corpus used for this study comprises German 

texts and their translations into Georgian language 

compiled for the GREG project (Kapanadze  et  al., 

2002, Kapanadze, 2010). The GREG lexicon itself 

contains valency data with the manually aligned 

Georgian, Russian, English and German verbs (ca. 1250) 

that are augmented with examples of sentences 

considered as translation equivalents. Each subcorpus 

used for the study has a size of roughly 2623 sentence 

pairs that correspond to different syntactic 

subcategorization frames considered as German-

Georgian translation equivalents. 

 

  3. Building  Monolingual Treebanks 

 

  3.1. Morphological analysis 

Georgian is an agglutinative language using  both 

suffixing  and prefixing. For the Georgian text analyses 

has been applied a finite-state morphological transducer 

using the XEROX FST tools (Kapanadze  2010a,b), 

(Kapanadze  2009).  The Georgian FST transducer 

utilizes a number of the formalisms supported by the 

XEROX toolkit (Beesley and  Karttunen,  2003). The 

lexicon specification language  lexc was used for 

modeling the lexicon and for constraining the 

morphotactics. It consists of 7 modules for noun, 
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adjective, pronoun, numeral, adverb, verb and the minor 

categories analysis. Currently there are two versions of 

the Georgian FST transducer available  in the MS 

Windows platform and in the LINUX UBUNTU version. 

 

3.2 Syntactic parsing 

 

The syntactic annotation employs parts-of-speech, 

morphological properties, and dependency functions.  

Every sentence is assumed to have a unique head and all 

other tokens, except punctuation marks, are direct or 

indirect dependents of the head. Monolingual files are 

XML-formatted. 

Using the morphologically annotated bilingual corpus 

and the GREG lexicon data,  both the German and the 

Georgian texts were syntactically annotated manually. 

For this purpose is used the Synpathy, a tool for  

syntactical annotation developed at Max Plank Institute 

for Psycholinguistics, Nijmegen, the Netherlands 

(www.mpi.nl/corpus/manuals/manual-synpathy.pdf). 

The German  treebank  annotation follows the TIGER 

annotation  scheme (Skut  et al., 1997, Brants et al., 

2002). T he Georgian treebank  was annotated 

according an adapted  version of the German TIGER  

guidelines with the necessary changes relevant to the 

Georgian grammar formal description. The output of the   

syntactic annotation is in the TIGER-XML format. 

From the TIGER-XML format, the syntactic annotation 

may be visualized with tools like TIGER Search, 

representing dependency graphs for  sentences in 

German and  in Georgian as shown in Figure 1 and 

Figure 3. 

 

The monolingual treebanks converted into TIGER-

XML, are a powerful  database-oriented representation  

for graph  structures.   In a TIGER-XML  graph each 

leaf (= token) and each node (= linguistic 

constituent) has a unique identifier (Samuelsson and 

Volk, 2007). We use these unique identifiers for the 

phrase and word alignment across trees in 

corresponding translation units.   

 

 
 
Figure1: A screenshot  of  an annotated Georgian  
              sentence. 
 
An XML representation is also used for storing 
this alignment. In the Figure 2 and Figure 4 
there are representations of the sentences from 
the Figure 1 and the Figure 3 in the TIGER-
XML format. 
 
 
<body> 
<s id="s12"> 
  <graph root="s12_502" discontinuous="true"> 
 
  <terminals> 
      <t id="s12_1" word="ის" pos="DPRN"    
        morph="Nom.3.Sg" /> 
      <t id="s12_2" word="აგიტაციას" pos="NN" 
        morph="Dat.Sg" /> 
      <t id="s12_3" word="ეწეოდა" pos="VVFIN" 
        morph="Sb3.Sg.Ob3.Pret" /> 
      <t id="s12_4" word="ამ" pos="DPRN"  
       morph="Gen.Sg" /> 
      <t id="s12_5" word="მთავრობის" pos="NN" 
        morph="Gen.Sg" /> 
      <t id="s12_6" word="წინააღმდეგ" pos="PPS" 
       morph="Gen" /> 
       <t id="s12_7" word="." pos="$." morph="--" /> 
 </terminals> 
 
 <nonterminals>       
   <nt id="s12_502" cat="S"> 
        <edge label="SB" idref="s12_1" /> 
        <edge label="HD" idref="s12_503" /> 
        <edge label="MD" idref="s12_501" /> 
   </nt> 
   <nt id="s12_503" cat="VP"> 
        <edge label="NN_dat" idref="s12_2" /> 
        <edge label="PRD" idref="s12_3" /> 
   </nt> 
   <nt id="s12_501" cat="PP"> 
        <edge label="DPRN" idref="s12_4" /> 
        <edge label="NK_gen" idref="s12_5" /> 
        <edge label="PPS" idref="s12_6" /> 
   </nt> 
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<nt id="s12_VROOT" cat="VROOT"> 
       <edge label="--" idref="s12_502" /> 
       <edge label="--" idref="s12_6" /> 
  </nt> 
</nonterminals> 
</graph> 
</s> 
 
Figure 2: A TIGER-XML format representation of a 
               Georgian sentence from the Figure 1. 
 
 
 

Figure3: A screenshot of the corresponding 

               annotated sentence in  German language. 

 
 
<body> 
<s id="s12"> 
  <graph root="s12_13" discontinuous="true"> 
 
<terminals> 
      <t id="s12_1" word="Er" pos="PPER" 
       morph="3.Sg.*.Nom" /> 
      <t id="s12_2" word="agitierte" pos="VVFIN" 
       morph="3.Sg.Pret" /> 
      <t id="s12_3" word="gegen" pos="APPR"  
      morph="Akk" /> 
      <t id="s12_4" word="diese" pos="ART"  
      morph="Def.Fem.Akk.Sl" /> 
      <t id="s12_5" word="Regierung" pos="NN"  
      morph="Fem.Akk.Sl.*" /> 
      <t id="s12_6" word="." pos="$." morph="--" /> 
</terminals> 
<nonterminals> 
     <nt id="s12_500" cat="CS"> 
     </nt> 
      <nt id="s12_502" cat="S"> 
          <edge label="SB" idref="s12_1" /> 
           <edge label="HD" idref="s12_2" /> 
           <edge label="MD" idref="s12_501" /> 
      </nt> 
       
    <nt id="s12_501" cat="PP"> 

        <edge label="AC" idref="s12_3" /> 
        <edge label="NK" idref="s12_4" /> 
        <edge label="NK" idref="s12_5" /> 
        <edge label="NK" idref="s12_6" /> 
      </nt> 
  
<nt id="s12_VROOT" cat="VROOT"> 
       <edge label="--" idref="s12_502" /> 
       <edge label="--" idref="s12_6" /> 
  </nt> 
 </nonterminals> 
 </graph> 
</s> 
 
Figure 4: A TIGER-XML format representation of a 
               German sentence from the Figure 3. 

 
 
 
4. Building  a Parallel Treebank  
  
Alignment of a Monolingual German 
and a Monolingual Georgian Treebanks 
into a Parallel Treebank  
 

This procedure  is done with  help of the Stockholm 

TreeAligner,  a tool for work with parallel treebanks 

which inserts alignments between pairs of syntax  trees 

(Samuelsson and Volk, 2005, Samuelsson and Volk,  

2006).  The  Stockholm  TreeAligner  handles  alignment 

of tree  structures, in addition  to word alignment, which – 

according to its developers - is unique (Samuelsson and 

Volk,  2006). 

Phrase  alignment  can be regarded  as an additional  layer 

of information  on top of the syntax  structure.   It  shows 

which part  of a sentence  in the German language  is 

equivalent  to which part of a corresponding  sentence in 

the Georgian language.  This  is done with the help of a 

graphical user interface of the Stockholm TreeAligner. We 

drew alignment  lines manually between pairs of 

sentences,  phrases  and  words  over parallel  syntax  

trees. Figure 5 shows a screenshot with two  aligned trees 

from Figure 1 and Figure 3.  We intended  to align as 

many phrases as possible.  The goal is to show translation 

equivalence. Phrases  shall be aligned only if the tokens, 

that  they span, represent the same meaning and  if they 

could serve as translation units  outside  the current 

sentence  context.   The  grammatical  forms of the  

phrases  need not fit in other  contexts, but  the 

meaning has to fit. 

The Stockholm TreeAligner guidelines allow phrase 

alignments within m : n sentence alignments and 1 : n 

phrase alignments.  Even though  m : n phrase  
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alignments  are technically  possible, we have only 

used  1 : n phrase alignments,  for simplicity and 

clarity reasons. One example of 1: n alignment on the 

word level is the Georgian multi-word expression for 

“აგიტაციის გაწევა” represented under  a VP node in the 

Figure 1, which is one word (“agitierte”) in the 

corresponding German sentence  from the  Figure 3.   

The 1 : n alignment option is not used if a node from one 

tree is realized twice in the corresponding tree, e.g. a 

repeated  subject in coordinated  sentences. 

 

 

 

Figure 5: A screenshot with   aligned trees from Figure 1 

               and Figure 3.   

 

The designers of the Stockholm TreeAligner differentiate  

between two types of alignment,  displayed by different 

colours.  Nodes and words representing  exactly  the 

same meaning are aligned as exact translation 

correspondences using the green colour for lines as it is 

shown on the Figure 6. In this regard a German word 

(“agitierte”) alignment  to the Georgian  Verb Phrase 

“აგიტაციის გაწევა” as an exact one,  might be 

considered problematic. Nevertheless, in such a case a 

prerequisite for this solution is  that they could serve as 

translation units  outside  the current sentence  context. 

 

If nodes and words  represent just approximately  the 

same meaning, they are aligned as fuzzy translation 

correspondences by means of  lines in the red colour as it 

is shown in the  Figure 7 bellow.   

 

    Figure 6: A screenshot of the  TreeAligner of the 

                  Georgian and German sentences with 1:1  

                   aligned words  and phrases. 

    

 

         Figure 7: A screenshot of the  TreeAligner of  

                        the Georgian  and German sentences  

                         with exact  and fuzzy aligned words  

                         and phrases. 
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In an appendix an example of an annotated compound 

Georgian and German sentences with exact and fuzzy 

alignment on simple clause and phrase level could be 

viewed. 

 

5. Conclusions and Future Research 

 

At the initial phase of presented experiment we made an 

overview of  experience in  building  parallel threebanks 

for languages with different structures (Megyesi and  

Dahlqvist, 2007), (Megyesi et al., 2006), (Grimes et al., 

2011),  (Rios et  al., 2009). 

As it is reported in a Quechua-Spanish parallel treebank  

project, due to strong agglutinative structure of Quechua 

language, it was decided to annotate the Quechua 

treebank on morphemes  rather than words. This allowed 

the authors to link morpho-syntactic information 

precisely to its source. Besides, building phrase structure 

trees over Quechua sentences does not capture the 

characteristics of the language. Therefore, they have chosen 

Role and Reference Grammar. By using nodes, edges and 

secondary edges in the Stockholm annotation tool they 

were able to represent the most important aspects of 

Role and Reference syntax for Quechua sentences (Rios 

et  al. 2009). 

Although the Georgian language is also an agglutinative 

language with suffixing and prefixing, there is no need to 

annotate the Georgian Treebank on morphemes. However, 

for syntactic annotation in the Georgian language a 

precise description of a specific structure/mechanism  of 

its clause is necessary. “The Georgian clause is a word 

collocation which draws on coordination and government 

of the linked verb and noun sequence” [Chikobava, 

1928]. The types of syntactic relations in the Georgian 

clause differ significantly from that observed in the Indo-

European or in other languages.  In the English Language 

there are just a small number of verbs that govern the 

nouns linked to them as indirect actants and demand those 

nouns to stand in an indirect case form (e.g. John 

believes him to be innocent). Besides, the actants 

involved do not induce changes in the verb form. In 

contrary,  in the polyvalent Georgian verb the actants are 

marked with specific affixes in a verb.  The most 

significant difference from the structure of the Indo-

European syntactic relations model is that in the Georgian 

clause we have a mutual government and agreement 

relations or a bilateral coordination phenomenon between 

verb-predicate and noun-actants which number may reach 

up to three in a single clause. It anticipates control of the 

noun case forms  by verbs, whereas the verbs, in their 

turn, are governed by nouns with respect to a grammatical 

person. Therefore, according to [Chikobava, 1928] in a 

syntactic description of Georgian the concepts  of a Major 

and a Minor Coordinate, instead of Subject and Object,  

are preferable. Moreover, in the verb forms of a certain 

semantic type an indirect object has preference as a Major 

Coordinate over a Subject (a Minor coordinate) in the 

respect of its marking in a verb form. Nevertheless, unlike 

the Quechua language, Georgian syntax can be 

sufficiently well represent by means of dependency  

relations and there is no need to utilize a different 

approach to capture the Georgian language structural 

peculiarities.  

As it has been already mentioned,  parallel texts for the 

Georgian language are very rare. Nevertheless, in the 

process of experimental undertakings for building a 

German-Georgian Parallel Treebank, we have discovered a 

text repository comprising the German-Georgian parallel 

texts in  jurisprudence. This bilingual text corpus is a 

collection of the Georgian laws translated into the 

German language. The corpus is created by human 

translators thanks to the  GTZ  (Gesellschaft  für  

Technische  Zusammenarbeit)  and  German  jurists  that  

supported development of a modern Georgian legislation 

during almost two decades. 

In the presented experiment, except morphological 

analysis for the Georgian text, syntax structures for both 

languages we have created completely manually.  For 

further expending the parallel German-Georgian Treebank 

for legislative texts we intend to experiment with the Tree-

to-Tree (t2t) Alignment Pipe (Killer,  Sennrich and  Volk,  

2011a, b). This is a collection of python scripts,   

generating automatically aligned parallel treebanks from 

multilingual web resources  or existing parallel corpora. 

The pipe contains wrappers for a number of freely 

available NLP software programs used for tokenization 

(NLTK Treebank), sentence alignment (Hunalign, Vanila 

Aligner, Microsoft BSA), word alignment (Giza++), 
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syntactic parsing (Stanford Parser, Berkley Parser)  and 

Tree to Tree Aligner (Zhechev 2009). 

On the final stage the Tree-to-Tree alignment pipe prepares 

an input for its further processing in the Graphical User 

Interface of the Stockholm TreeAlligner which will be 

used for  the aligned German-Georgian Treebank 

visualization and correction procedures. 
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Abstract
We build a large treebank of Czech, avoiding manual effort byusing a parser, supplemented by a rule-based correction tool. A potentially
underspecified morphological and syntactic annotation scheme offers multiple visualisation and export options, customizable in shape
and detail according to the preferences of humans or computer applications. The annotation scheme consists of three layers: graphemics,
morphology and constituency-based syntax, and is supported by a lexicon (with a morphological, multi-word and syntactic part) and
a grammar. Annotation on any of the interlinked layers can bemissing; ambiguous or undecidable phenomena are represented by
underspecification and distributive disjunction.

1. Introduction
Treebanks are often built with considerable manual effort
and cannot match the size of other text corpora. Yet when-
ever a language is lucky to have one, human users and ap-
plications alike benefit from its existence.1 At first, the size
of the corpus, the style and theoretical background of the
annotation, or even its detail are not an issue. But sooner or
later the users realize that at least for some tasks a treebank
should reach higher volumes.2 Additionally, various wishes
concerning a “proper” annotation scheme are voiced, of-
ten reflecting the division of syntactic theory into a number
of camps. Finally, some data are difficult to annotate un-
ambiguously and call for underspecified description (Oliva,
2001). We wish to propose answers to these issues.
The bigger the better, but not at an unbearable decrease in
reliability. The largest treebanks reach the modest sizes of
several million words. To match the size of a balanced
POS-tagged corpus, the use of parsing tools is inevitable.
But parsers still perform less reliably than POS taggers and
the cost of manual checking is prohibitive.
Building on previous efforts in treebank annotation of
Czech, especially the Prague Dependency Treebank – PDT
(Hajič, 2006, i.a.), we combine a stochastic parser (Holan
andŽabokrtský, 2006) with a rule-based correction mod-
ule (Jelı́nek, 2012), diminishing the parser’s error rate.The
goal is to provide syntactic annotation for all contemporary
written texts in the Czech National Corpus.3 The texts rep-
resent a balanced mix of genres, with the total of 1.3 billion
tokens at the moment.
We are not alone in realizing the usefulness of “parse-
banks”. In addition to those serving as a testbed for a

1There is ample evidence of the usefulness of treebanks, even
of those concerning less widely spoken languages, such as Czech,
cf. http://ufal.mff.cuni.cz/pdt2.0/ .

2This may be a concern for experts in machine learning and
linguistic theoreticians alike. The latter are sometimes interested
in very specific and rare cases to support a theoretical claim. Due
to the lack of such evidence in treebanks of a smaller size, they
resort to elicitation and/or use a larger corpus without syntactic
annotation (Przepiórkowski and Rosen, 2005).

3The “SYN” family of subcorpora, seehttp://www.
korpus.cz/english/struktura.php .

specific rule-based grammar and linguistic theory, such
as LinGO Redwoods,4 there are other large automatically
parsed corpora available, such as LASSY,5 with Dutch texts
numbering 1.5 billion tokens. The higher error rate does not
seem to be a serious obstacle for tasks such as automatic
valency acquisition.
An additional way to make the automatically parsed corpus
useful is to offer fully customizable visualisation and ex-
port, including various folding and filtering options. Then
the results are potentially less sensitive to errors in details
or in more embedded structures. The scheme can also rep-
resent inherent ambiguities (in principle impossible to re-
solve even in a wider context), and allow for uncertainty or
underspecification, potentially remediable later.
Even more importantly, there are various modes of display-
ing syntactic structure, according to the preference of the
user, who may subscribe to a specific syntactic theory and
may be put off by theoretical bias of a treebank. Yet de-
spite differences in appearance and focus, all linguistic the-
ories strive to describe the same object – a natural language.
There is a large pool of implicit wisdom shared by all syn-
tactic theories and a significant overlap of knowledge can
be extracted from all theory-specific formats.
This multitude of syntactic paradigms can be approached
by introducing parallel annotation layers (Hautli et al.,
2012). However, we opt for a more flexible scheme, which
is feasible precisely because all theories have to cope with
the same issues. We propose a treebank offering different
views of syntactic annotation while based on a single core
pattern. In addition to constituency and dependency trees
of various shapes, suited to the taste of linguistic experts,
some views may be appealing to a wider audience of stu-
dents and professionals dealing with language.
With these aims in mind, our explicitly defined annotation
scheme consists of a potentially underspecified morpholog-
ical and syntactic core, complemented by multiple interac-
tion shells, customizable in shape and detail according to
the preferences of humans or computer applications.
In Section 2. we explore the annotation scheme in more de-

4http://lingo.stanford.edu/redwoods/
5http://www.let.rug.nl/ ˜ vannoord/Lassy/
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tail, before discussing the conversion from the dependency
trees produced by the parser to our format in Section 3. and
the rule-based correction module, applied to the parser’s
output, in Section 4.

2. The core structure
The texts are annotated by a single core scheme, inter-
pretable in different ways. The syntactic structure part is
based on constituency, which supports structural ambigu-
ity and underspecification more easily and can serve as a
source from which multiple representations can be derived
(see Section 2.3.). The annotation is licensed by a formal
description, a de facto grammar, which additionally facili-
tates format conversions (see Section 2.2.).

2.1. Separation of graphemics, morphology and
syntax

Word order and syntactic structure are represented in the
core structures as formally distinct dimensions to support
the choice of similarly separate or integral visualisationand
comparison. In fact, each sentence is represented at three
inter-linked levels: graphemics (orthographic words), mor-
phology (syntactic words), and syntax (trees). The level
of graphemics allows for handling contractions and simi-
lar purely orthographical phenomena. Reflexives subject to
haplology are restored 2.1., and contractions such asses,
represented as a single graphemic unit, are analysed as two
morphological forms: here as a reflexive pronoun/particle
and the 2nd person auxiliary. More mismatches in the num-
ber of tokens occur between the levels of morphemics and
syntax, where punctuation is omitted.

(1) Rozhodl
decidedmasc,sg

se
REFL

umýt.
washinf

‘He has decided to wash himself.’

The haplologized itemseis both a reflexive particle, a part
of an inherent reflexiverozhodl se, and a reflexive pronoun
as the object of the transitive verbumýt se. As such, it is
represented as two tokens on the level of morphemics:

GRAPHEMICS rozhodl se umýt
MORPHEMICS lpple,masc,sg pcle prnrefl,acc inf

The two interpretations ofse appear as two nodes in the
syntactic structure below. The boxed constituent stands for
the inherently reflexive verb as a multiword.

S

HD

HD

SUBJ: 3rd,masc,sg
rozhodl

REFLTANT

sepcle

OBJ

HD

umýt
SUBJ:

OBJ

seprn

Figure 1: Haplology in a tree

Mismatches in the number of nodes at the individual levels
(as in the case ofseabove) are kept at a minimum, elided
items of all sorts are not restored as separate nodes but
recorded in the node-internal structure of their heads or re-
ferring expressions as arguments, adjuncts or antecedents.
E.g., in Fig. 1, PRO is represented equivalently as a link
between the subject of the infinitive and the subject of the
finite verb. All such phenomena are represented by linking
the infinitive, predicative complement, base coordinated
verb etc. across the structure with its argument. The link
is labeled by the relevant syntactic function.
Links of another type make sure that agreeing categories
in subject-predicate or adjective-noun agreement structures
share identical values and the agreeing forms are identi-
fied. In the linear display (2), agreeing forms are under-
lined. Such links are predictable from syntactic structure
and functional labels, and are inferred using the formal de-
scription of the annotation (grammar and lexicon).
Depending on the choice of the user, discontinuous (non-
projective) structures can be represented as such, with
crossing branches of the syntax tree, or made continuous
(projective) on the syntactic level, with the order of the ter-
minal nodes different from the lower levels. The parser is
able to identify non-projectivity in the assumed dependency
structures, and its results are subject to checks and modifi-
cations by correction rules.

2.2. Formal description of the annotation

To enforce consistency in the annotated data and to sup-
port interaction with the annotation, all syntactic structures
in the corpus have to be licensed by a formal grammar.
This includes a requirement that words and constituents
have their appropriate (potentially underspecified) sets of
features. A lexicon, compiled from existing resources and
the corpus, and coupled with the grammar, is used to index
word tokens using lemmas with appropriate categories, as
well as compound forms and multi-word lexical units.
The grammar, based on the formalism of HPSG (Pollard
and Sag, 1994), consists of (i) a definition of formal ob-
jects used to represent words and constituents, together
with their properties, and (ii) constraints on the setup of
larger objects, such as phrases, consisting of other objects.
The formalism of HPSG allows for an arbitrary level of
specificity of the description, and for including informa-
tion of all kinds, which is useful for two reasons: a) The
description should cover all structures and phenomena in
the treebank, which is a hard task for a standard rule-based
grammar. We need to relax some constraints or leave them
unspecified, allowing for a prospect of a long-term gram-
mar development. b) The core structures should be inter-
pretable in various ways and according to various linguistic
theories, relying on information in the structures.
Although the data in the corpus have a three-layered struc-
ture technically, they are compatible with the HPSG data
format, where a single object provides all information about
any expression – word or phrase. The information from
the three levels, from the grammar and from the lexicon is
merged and presented in a single virtual object.
In addition to checking the treebank’s consistency, the
grammar with the lexicon is useful (i) for inferring agree-
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ment relations, which do not have to be present in the input
or supplied manually, (ii) as a base for describing format
conversions to customized visualisation and export, and
(iii) to supply additional annotation, such as parallel inter-
pretations in prototypical cases of syntactic ambiguity.
The lexicon consists of three parts: morphological (speci-
fying inflection paradigms of individual lemmas), syntac-
tic (specifying their syntactic properties) and a lexicon of
multi-word units, identifying analytical verb forms, poten-
tially discontinuous collocations and phrasemes.
The setup of lexical resources and their relation to the three
layers of annotation is shown in Fig. 2. Details about the
tricky case of haplology are illustrated in Fig. 3, where to-
kens on the layer of graphemics are linked with tags on the
morphological layer (such asTT. . . for reflexive particle, or
P7-X4 . . . for reflexive pronoun), which, in turn, are linked
to lemmas in the morphological lexicon, and to nodes on
the syntactic layer. The nodes point to the syntactic lexicon,
including, e.g., info on valency, and – where appropriate –
also to the multi-word lexicon.

2.3. Multiple options to display syntactic structure

The syntactic annotation scheme is designed to offer differ-
ent views of its content, including constituency or depen-
dency trees with a customizable level of abstraction (con-
cerning, i.a., deep or surface dependencies, interpretation
of function words, and identification of complex verb forms
including inherent reflexives), and visualized in a horizon-
tal or vertical mode with an arbitrary amount of detail, not
necessarily by tree graphs. A linear display identifying
the major (possibly discontinuous) constituents of a clause
could be the option of choice for many users, see (2).

(2) A linear display of elementary syntactic structure:6

Ty by ses byl ušpinil.

Displayed information need not be explicitly encoded in the
core structure, e.g., standard syntactic categories such as S,
NP or PP are derived from the POS of the word or of the
constituent’s head and its valency.
An important side effect of less detailed visualisation is that
some annotation errors can remain hidden. The parser pro-
duces about twice as many errors in syntactic structure than
in syntactic functions, while the distributions of errors is
uniform across all branches within a tree. By displaying
only partial syntactic analysis, e.g., by using a combina-
tion of filters on main clause constituents, constituent la-
bels, syntactic functions or syntactic structure, the number
of errors visible by the user may be significantly reduced.

2.4. Surface and deep structure

Every constituent has a type – headed or unheaded – and
a syntactic function. The list of types and functions is pre-
sented in Tables 1 and 2 below.
As Table 2 shows, a head can be distinguished as surface
or deep; a function word such as preposition or verbal aux-
iliary is labeled as surface head while its sister is the deep

6The intended meaning of the text attributes is as follows:sub-
ject, predicate,object, agreeing forms.

Label Description
HEADED Headed type
UNHEADED Unheaded type with three subtypes:
– COORD coordination structure
– ADORD adordination structure
– UNSPEC unspecified: other type of structure

Table 1: Types of constituents

Label Description
SHD Surface head
DHD Deep head
HD Head (simultaneously surface and deep)
SUBJ Subject
OBJADVB Object or Adverbial with two subtypes:
– OBJ Object
– ADVB Adverbial
ATTR Attribute
VBATTR Verbal complement
REFLTANT Reflexive particle
DEAGENT Reflexive particle with deagentive meaning
APOS Apposition
INDEP Independent constituent

(parenthesis, noun in the vocative, etc.)
MEMB Member of one of the unheaded subtypes

Table 2: Syntactic functions

head.7 This allows for extracting both surface and deep de-
pendencies from a single structure, see Fig. 4. Coordination
and similar constructions are treated as headless (they are
of the type UNHEADED).

(3) Ty
you

by
would

ses
REFL+AUX2nd,sg

byl
bepple

ušpinil.
get dirtypple

‘You would have got dirty.’

The three structures in Fig. 4 are all possible renderings of
a single analysis of (3). The constituent structure has func-
tion labels for subject, object, head, surface head and deep
head, and it is followed by the derived surface and deep de-
pendency structures.8 Complex verb forms are highlighted
by boldface, contractions by a box.
It is relatively straightforward to distinguish the three types
of head, and thus the shape of the surface and deep depen-
dency structure. Lexemes identifiable in a proper syntactic
context as surface heads are labeled with specific syntac-
tic functions by the parser and form a closed class. This
distinction, implying the assignment of functional labelsto
other nodes in the vicinity, is performed by rules operating
during the conversion of the parser output.

2.5. Ambiguity and partial information

Most corpora are annotated in an unambiguous way. Yet
ambiguity is sometimes inevitable for fundamental reasons,

7Przepiórkowski (2007) distinguishessyntacticandsemantic
heads in syntactic annotation of a corpus of Polish.

8For technical reasons, the labels mark nodes rather than
edges, representing both constituency and functional relations.
The nodes refer to categorial information appropriate to words or
phrases, as in the analysis of (6) above.
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Figure 2: The setup of layers and lexical resources

Morph. lex.

rozhodnout

se 1

se 2
umýt...

Synt. lex.

rozhodnout

rozhodnoutse

se 1

se 2
umýt...

Multi-word lex.

V se...

Multi-word lex.

V se...

Rozhodl se umýt .
(he) decided REFL (to) wash .

VpMS---3R-AA--- TT-------------

P7-X4----------

Vf--------A----

Z:-------------

Hea
d Obj

Hea
d

ReflTant Hea
d Obj

Figure 3: Solution to a case of haplology of a reflexive

whether in segmentation, morphology or syntax. Exam-
ples include valency slots with ambiguous case require-
ments filled by nouns exhibiting case syncretism as in (5)
(Oliva, 2001), or structures involving PP-attachment ambi-
guity without a difference in meaning (4). Ambiguities of
this type cannot be resolved even in a wide context.

(4) Uzavřeli
concluded

mı́r
peace

s
with

nepřı́telem.
enemy

‘They made peace with the enemy.’

(5) V
in

továrně
factory

se
REFL

využı́vá
use

zařı́zenı́
devicenom/acc

na
for

výrobu
production

kyslı́ku.
oxygen
‘In the plant a device for the production of oxygen is used.’

Unresolved ambiguity may also be preferable to an arbi-
trary decision in case of poor evidence.

The scheme accommodates inherently ambiguous or unde-
cidable phenomena using underspecification and distribu-
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Figure 4: Three views of a single sentence

tive disjunction, both for category values and structures.
Annotation of any kind can be missing; in the extreme case,
syntactic structure of a sentence may consist of a mere list
of words. A partial analysis may identify a word’s head, its
membership in a constituent, its syntactic function, or any
combination of the above, while still leaving other syntactic
relationships in the sentence unresolved.
To allow for such arbitrary underspecification, the skeleton
structure is constituency-based, with a combination of bi-
nary and flat branching. Sub-constituents are specified by
reference to a list of all constituents in sentence (6).9

(6) Zdravotnictvı́
health servicenom/acc

musı́
must

zachránit
save

stát.
statenom/acc

#1 Health service must save the State.
#2 Health service must be saved by the government.

(7) Morphological analysis of (6) with some values unspecified:

1 zdravotnictvı́ noun, CASE=X, NUM=sg, GEND=n
2 musı́ verbfin, PERS=3, NUM=sg
3 zachránit verbinf
4 stát noun, CASE=Y, NUM=sg, GEND=m

(8) Constituents in one of the two possible syntactic structures
of (6), some boxed numbers refer to the forms above:

5 [ 3 zachránit4 stát ]
6 [ 2 musı́ 5 ]
7 [ 1 zdravotnictvı́6 ]

(9) Two possible structures with constraints on category values
and overriding clauses:

#1 = 7 , X=nom, Y=acc

#2 = 7 , X=acc, Y=nom, 1 → 4 , 4 → 1

9Note that the example is not inherently ambiguous – it has
two distinct interpretations, potentially distinguishable given an
appropriate context or world knowledge.

While dependency structure requires a specification of
heads and dependency links for all parts of the tree, con-
stituency structure allows for leaving the status of a con-
stituent and relations within an embedded constituent un-
specified. Constituency structure may be more useful even
for representing ambiguities, at least when they can be ren-
dered as underspecifications. E.g., it is not clear what kind
of structure is correct in appositive structures such as (10).

(10) vedoucı́
head

katedry
department

profesor
professor

doktor
doctor

Václav
Václav

Novák
Novák

‘Professor doctor Václav Novák, head of the department’

Ambiguities can either be present in the output of the
parser, if it is run in an n-best mode, or they can be re-
constructed by rules targeting typical cases. Moreover, PP-
attachment ambiguities without semantic relevance are sup-
posed to be tagged as such in the output of the parser, with-
out generating multiple structures explicitly. For the time
being, we intend to use the latter, somewhat unreliable, in-
formation wherever appropriate, and focus on experiment-
ing with the reconstruction approach.

3. Converting dependency trees
Our syntactic trees are grown in a dependency-based nurs-
ery of McDonald’s MST parser to the shape of the PDT
a-level standard. The parser takes as its input a mor-
phologically disambiguated sentence; the disambiguation
is performed by a hybrid tagging system consisting of a
rule-based component comprising about 2500 rules and a
stochastic tagger. Syntactic trees produced by the parser are
checked and rectified (see Section 4. below), and then con-
verted to the internal annotation scheme and format, which
differs from the input in the following aspects:

• In a different overall structure: the new scheme is
based on constituency (phrase-structure) trees, e.g.
with the subject a sister node to the clause’s predicate.

• In a smaller set of syntactic functions (cf. Table 2).

• In a different account of word order, represented by
links connecting unordered terminal nodes of the tree
with their corresponding elements on the level of
graphemics.

• In reference links, used, e.g., for connecting predica-
tive elements (finite verb forms, infinitives, transgres-
sives, nominal predicates) with their subject.

Rather than developing a full-fledged grammar of Czech
from scratch and preparing appropriate training and testing
data we used almost error-free training data in a format us-
able by the parser (customized for Czech) and also a vast
amount of testing data in PDT (ca. 1.5 mil. tokens).
The conversion is performed by the application of a se-
quence of transforming rules to each input sentence. We
demonstrate the conversion using (11) as an example.

(11) Most,
bridge,

který
which

byl
was

v
in

havarijnı́m
disrepair

stavu,
state,

by
would

měl
have

sloužit
to-serve

dalšı́ch
further

třicet
thirty

let.
years
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‘The bridge, which was in a state of disrepair, should serve
for a further thirty years.’

Sentence (11) is converted from the parser output (a-level
of PDT) in Fig. 5 to the new format as in Fig. 6.

Figure 5: Syntactic tree in the PDT format

Figure 6: Syntactic tree in the new format

Some of the rules applied are merely technical or handle
trivial operations on a single node. Other rules modify the
geometry of the tree. Generally, the conversion of an input
dependency tree to the corresponding constituency-based
one proceeds recursively in a top-down direction, i.e., from
the root of the input dependency tree down to the dependent
nodes, and similarly, an output constituency-based tree is
created. A rule is applied whenever the conversion algo-
rithm finds the first appropriate bundle (= a simple tree).
In general, the input dependency bundle is converted in a
following way: a new constituent is created having as its

subconstituents a) all the constituents created by the trans-
formation of the dependent nodes of the bundle and b) the
constituent labeled by the output function HEAD or DEEP-
HEAD: this subconstituent will be assigned the word form,
lemma and morphological properties of the head node of
the dependency bundle.
A leaf of the input dependency tree is converted to the ter-
minal constituent that is assigned the corresponding word
form and its original function except for the nodes assigned
the HEAD, DEEPHEAD or SURFHEAD function.
We shall briefly describe the main conversion rules, one of
them a general rule, the others specific:

1. General rule. This rule converts a dependency bun-
dle consistings of a head node and a non-empty set of
its daughters to the corresponding constituent bundle.
This bundle contains (i) the root and the nodes for the
non-head daughters corresponding to the daughters of
the input bundle and (ii) the node for the head daugh-
ter corresponding to the root of the input bundle: this
node is assigned the HEAD function. The rule is ap-
plied to the input bundle whose head is a predicate and
whose daughters are its non-subject complements.

2. Subject rule and Auxiliary verb rule. Both rules op-
erate in a structurally identical way, the difference is
in the syntactic functions. TheSubject rule/ Auxiliary
verb ruletake as input a bundle containing a root rep-
resenting a verbal predicate and asubject/ auxiliary
verb, respectively, as one of the daughters of the root.
On output, a binary constituent tree is created at the
highest level: its head daughter corresponding to the
verbal predicate is assigned the HEAD / DEEPHEAD

function, the non-head daughter corresponds to the in-
putsubject / auxiliary verband is assigned the SUBJ /
SURFHEAD function. Furthermore, the head daughter
is a root of another bundle: one of its daughters is as-
signed the HEAD function and the remaining non-head
daughters correspond to the remaining sister nodes in
the input.

3. Prepositional group rule and Conjunction-clause rule.
These two rules also operate in a structurally identical
way: they both transform an input dependency edge
connecting a preposition / conjunction as the head el-
ement assigned theAuxP / AuxC function with the
dependent node, referred to asX below. A binary tree
is created on output: its root is assigned the function of
theX node, the daughter corresponding to the prepo-
sition / conjunction is assigned the SURFHEAD func-
tion, the other one is assigned the DEEPHEAD func-
tion as well as the word form and morphological prop-
erties transferred from the inputX node.

So far, 15 rules have been developed and tested on a subset
of the PDT data. We plan to add new rules covering special
phenomena encountered during intensive testing.
The conversion of the input structure of sentence (11) in
Fig. 5 to the output structure in Fig. 6 can be briefly de-
scribed as follows:
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• First, the root of the input dependency tree labeled
SCzechA as well as the node labeledAuxK represent-
ing a full-stop are left out, only the subtree with the
root labeled by thePred function will be converted.

• The Pred-labeled subtree will be processed in a
left-to-right and top-down way, with every embed-
ded bundle being recursively processed by the above-
mentioned rules. Thus, thePred-labeled bundle with
the three daughter nodes denotedSb, AuxV andObj
will be processed first and subsequently the subtrees
headed by them. The word forms and correspond-
ing morphological tags (realized, in fact, by point-
ers to the morphological level and to lexicons, cf.
Fig. 3 above) are recursively propagated down the
constituency-based tree being created to be finally as-
signed to its leaf nodes.

In addition to the structure-changing rules used to gener-
ate phrase-structure trees complying with the new scheme,
special rules adding reference links are applied.
Another group of rules, currently under development, are
used to identify various substructures within the generated
trees, such as:

• Agreement relations, such as subject – predicate, con-
gruent attribute – noun, relative pronoun – antecedent

• Periphrastic verb forms including auxiliaries, such as
conditionals, future and past tenses, passive

• Idioms and other specific types of collocations

• Inherently reflexive verbs or adjectives with the corre-
sponding reflexive particles

• Surface/deep heads in structures of a specific type

• Non-projective (discontinuous) constructions (in-
ferred from the surface order)

• Ambiguities undecidable even in a wider context (spe-
cific cases of PP-attachment and case syncretism)

Annotation of some of these structures (such as agreement
relations and periphrastic forms) is not present in the tree-
bank; the rules identifying them are invoked only after a
user specifies his/her query to search for them in the tree-
bank.

4. Automatic correction of results of the
stochastic parser

Parsing unrestricted text by machine-learning techniques
currently outperforms methods using hand-crafted rules, at
least for Czech (Holan anďZabokrtský, 2006; Novák and
Žabokrtský, 2007), therefore the input data for the con-
version program are provided by stochastic parsers. Their
accuracy up to now is, however, unsatisfactory: the best-
performing parser available is the MST parser (McDon-
ald et al., 2005) trained on PDT 2.5, whose success rate
is 85.48% for unlabeled structures and 78.23% on labeled
ones (measured on theevaluation-testsubset of the PDT).
A detailed analysis of the parser’s results performed on the

object corpus SYN2005 (100 mil. tokens of contemporary
Czech) showed that it was possible to use linguistic knowl-
edge for a reliable correction of many frequent parsing er-
rors and thus to improve the overall accuracy of the parser.
Therefore we developed our own rule-based correction tool
with the set of rules being gradually enhanced.
During the development of this tool we annotated first the
SYN2005 corpus by the stochastic parser. Then we manu-
ally checked the samples (ca 10,000 tokens altogether), in
which we searched for recurrent errors, and subsequently
we searched for errors in the whole corpus automatically.
The most frequent errors were subject to further analysis
and we tried to find reliable algorithms for error correc-
tions. The parser makes both grave “grammatical” errors,
where the resulting structure is totally inadmissible in the
system of Czech syntax (e.g., two non-coordinated subjects
depend on a single verb), and also common errors due to
the parser’s ignorance of valency, incorrect identification of
head elements etc.
Automatic correction is performed by a modular soft-
ware tool, employing extensive linguistic knowledge, rep-
resented, e.g., by various lists of lexical properties, includ-
ing valency requirements. The tool identifies incorrect de-
pendency structures, syntactic function labels and morpho-
logical tags. Whenever a well-known incorrect syntactic
pattern is encountered, a corresponding correction routine
is applied which chooses an appropriate correction accord-
ing to the context and properties of the words in the erro-
neous structure. See (Jelı́nek, 2012) for more details.
One of the correction rules deals with subject incorrectly
assigned to the noun in non-prepositional accusative. On
the basis of context and properties of the incorrectly labeled
word and its head verb the tool activates the appropriate
linguistic rule which decides whether it should correct the
syntactic function label (subject→ object/adverbial), mor-
phological tag (accusative→ nominative in case of wrongly
disambiguated case ambiguity) or the parent node in the de-
pendency structure (some other appropriate head verb in the
clause is selected).
So far we have created 30 correction rules, targeting more
frequent errors for which reliable correction algorithms
were found. One group of rules focuses on the basic de-
pendency structure of a compound sentence consisting of
verbs (they represent sentences in the PDT) and conjunc-
tions. Another group of rules deals with incorrect syntac-
tic functions and dependencies of syntactic nouns (e.g. the
above-mentioned subject in accusative), the third group of
rules rectifies the dependencies and functions of preposi-
tional groups. The number of these rules grouped accord-
ing their target domain and their success rate is shown in
Table 3. The first column identifies the domain of the rules
(dependency links and function labels of clauses, noun
phrases, prepositional phrases and other rules), followed
by the number of rules in the second column, the number
of successful corrections of dependency links and syntactic
function labels in the third and fourth columns, and the total
number of successful corrections in the last column (some
corrections modify dependency links as well as function la-
bels). The success rate is calculated automatically on the
e-testdata set of PDT 2.5. The counts represent the number
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of successful corrections, decreased by the number of un-
successful corrections, normalized per one million tokens.
The last row shows the figures in percentages.

rules dependency label total

Clauses 6 1688 774 1744
NP 8 819 2066 2625
PP 11 834 7160 7722
Other 5 412 1390 1802
Total (ppm) 3753 11390 13893
Total (%) 0.38% 1.14% 1.39%

Table 3: Success rate of the correction modules

The resulting success rate improves from 85.48% unla-
beled and 78.23% labeled accuracy to 85.86% unlabeled
and 79.62% labeled accuracy. The correction tool can be
further extended by additional rules.
In addition to extending the coverage of the correction tool,
more procedures to improve the parsing results are in the
pipeline, such as a rule-based pre-processing of both train-
ing and annotated data, a combination of multiple parsers,10

a modification of the tagset to better serve the needs of pars-
ing, and an extension of training data with text genres insuf-
ficiently covered in our original test set, such as fiction. We
expect to raise the reliability of syntactic annotation above
87% unlabeled and 83% labeled by the end of the project.

5. Conclusion
We wish our treebank to match the size of POS-annotated
corpora, while avoiding a theoretical bias by offering var-
ious views of syntactic annotation, based on a single core
representation. The viability of this approach reflects the
fact that linguistic theories share a broad common core.
A sentence can then be visualized as a constituency-based
or dependency-based structure with parameterizable under-
specifications according to the user’s wish. Three levels
of representation (graphemic, morphological and syntactic)
support the view of a bare input sentence and/or its mor-
phological and syntactic annotation in various degrees of
descriptive granularity. The system should satisfy demands
of both an expert user and a student of syntax at higher ele-
mentary and secondary levels.
For a corpus of this size it would be unrealistic to count
on manual checking of the output of automatic annotation
tools. As a partial remedy, we use a rule-based correction
module, targeting typical errors and inconsistencies. To-
gether with visualisation options hiding very specific de-
tails or embedded structures, which a typical corpus user is
expected to use as a preference, the effective error rate in
the displayed data will be lower than in the output of the
parser. We believe that the price for a significantly scaled-
up treebank, paid in less reliable annotation, will be bear-
able for many tasks.
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Abstract
Annotated corpora are fundamental for NLP, and the trend in their development is to move towards datasets with increasingly detailed
linguistic annotation. To cope with the complexity of producing such resources, some approaches rely on a supporting deep processing
grammar that provides annotation that is rich and consistent over its morphological, syntactic and semantic layers. However, for some
purposes, the deep linguistic corpora thus produced are “too deep” and unwieldy. For instance, if one wishes to obtain a probabilistic
constituency parser by learning a model over a treebank, the full extent of the annotation created by a deep grammar is not needed and can
even be detrimental to training. In this paper, we report on procedures that, starting from a deep dataset produced by a deep processing
grammar, extract a variety of vistas—that is, subsets of the information contained in the full dataset. This allows taking a single base
dataset as a starting point and, from it, deliver a variety of corpora that are more streamlined and focused on particular tasks.

1. Introduction
Annotated corpora are key resources for NLP. Not only are
they important materials for researchers investigating lin-
guistic phenomena, they also allow one to automatically ob-
tain data-driven models of language and evaluate the tools
thus produced.
Annotating corpora with human-verified linguistic infor-
mation is a time-consuming and often error-prone task.
Early treebanks for NLP, like the well-known Penn Tree-
bank corpus, were built with the help of automatic anno-
tation tools that were used to provide a preliminary anno-
tation which was then manually corrected (Marcus et al.,
1993).
Performing such corrections by hand can introduce format-
ting errors since manual changes may easily be malformed
(e.g. misspelled categories, forgetting to close a bracket,
etc). As such, the manual correction step is often aided by
a tool that ensures that at least the linguistic information is
well formed
However, as the linguistic information one wishes to in-
clude in the corpus grows in complexity, this approach be-
comes increasingly hard to adopt since the human annota-
tor, even with the help of supporting software, has to keep
track of too much interconnected information.
To address this issue, approaches to corpus annotation have
come to rely on an auxiliary deep processing grammar as a
way of producing rich annotation that is consistent over its
morphological, syntactic and semantic layers. Two exam-
ples of such an approach are (Dipper, 2000), using an LFG
framework, and (Oepen et al., 2002), under HPSG.
Despite these advantages in terms of consistency and depth
of the information encoded, the annotation produced by
such grammars is often too theory-specific or too unwieldy
for certain purposes. For instance, if one wishes to train a
probabilistic constituency parser, the linguistic information
on grammatical functions and semantic roles present in the

output of a deep grammar is not needed and, if integrated
into the model, might actually be detrimental to the perfor-
mance of the parser due to data-sparseness issues.
The image in Figure 1 helps to illustrate the problem. It
shows the fully-fledged grammatical representation, under
the HPSG framework, for the rather simple sentence Todos
os computadores têm um disco (Eng.: All computers have a
disk).1

Thus, it is desirable to have a process that allows extract-
ing vistas—that is, subsets of the information contained in
the full dataset—such as text annotated with part-of-speech
tags, a plain constituency tree or a grammatical dependency
graph.
In this paper we present a set of procedures that allow ex-
tracting several such vistas from a deep linguistic dataset.
In particular, we will use a dataset that has been pro-
duced by a computational grammar based on the HPSG
framework (Pollard and Sag, 1994; Sag and Wasow, 1999;
Copestake, 2002).
Section 2 provides an overview of the grammar-supported
annotation procedure used to produce the full deep dataset,
while Section 3 describes the deep dataset itself. This is fol-
lowed by Section 4, where the vista extraction procedures
are presented. Section 5 provides an extrinsic evaluation of
the extracted vistas by inducing probabilistic parsers over
them. Finally, Section 6 concludes with final remarks.

2. Grammar-Supported Treebanking
A grammar-supported approach to corpus annotation con-
sists in using a computational grammar to produce all pos-
sible analyses for a given sentence. What is then asked of
the human annotator is to select the correct parse among all
those that were returned. In such a setup, the task of the

1The printout is in a 6pt font. The arm and hand holding a
pen are there just to give a sense of the size of the grammatical
representation.
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Figure 1: Full HPSG representation of the sentence

human annotator can be envisaged as being one of disam-
biguation.
Due to the inherent ambiguity of natural language, the parse
forest that results from the grammar producing all possible
analyses for a sentence may very well include hundreds of
trees. Manually examining each individual tree in search
for the correct one would prove unfeasible. Instead, the hu-
man disambiguator goes through a list of discriminants to
reduce the number of parses. Discriminants are binary dis-
ambiguation decisions, many of which cut the parse forest
in half.
For instance, PP-attachment is a common source of struc-
tural ambiguity, where a PP constituent may validly attach
to more than one constituent in the parse tree. A discrim-
inant would state whether the PP attaches to a given con-
stituent. Choosing that discriminant as valid automatically
prunes from the parse forest all parses where the attach-
ment of that PP is different, while marking the discriminant
as invalid discards all trees where the PP is attached to that
same constituent.
For such an approach to work, it must be supported by a
tool that provides the discriminants and handles the prun-
ing of the parse forest in a manner that is unobtrusive for
the human annotator. For datasets in the HPSG family,
like the one used in this work, this can be done using the
[incr tsdb()] tool (Oepen and Flickinger, 1998). Be-
sides providing an interface for the disambiguation pro-
cess described above, this tool integrates functionality for
benchmarking, profiling and testing the grammar over test
suites.

3. The Core Dataset
To create the core deep linguistic dataset from which the
vistas will be extracted, we started with a corpus of Por-
tuguese newspaper excerpts which had been previously an-
notated with manually verified shallow morpho-syntactic
data, namely part-of-speech tags, lemmas, inflection fea-
tures and information on named-entities.
This corpus was then treebanked according to the process
outlined in Section 2. The supporting grammar that was
used is LXGram, a deep computational grammar for Por-
tuguese (Branco and Costa, 2008; Branco and Costa, 2010).
It is worth of note that, for this dataset, annotation was done
through a method of double-blind annotation followed by
adjudication. In this setup, two human annotators work in-
dependently while pruning the parse forest returned by the
grammar. If both annotators agree on the choice of an anal-
ysis, that analysis is added to the dataset. When the an-
notators disagree on what is the preferred analysis, a third
human annotator, the adjudicator, is brought in to decide
which analysis will be added to the dataset, if any (the adju-
dicator is free to choose a third analysis, rejecting the ones
chosen by either annotator). This method of corpus annota-
tion is resource-consuming, both in terms of human effort
(three people are needed) and in terms of time (an adju-
dication round is required), but it allows a stricter quality
control of the dataset being produced.
Due to the way it was built, the core dataset only con-
tains those sentences that the supporting grammar was able
to parse. It is formed by 5,422 sentences, most of which
(4,644, or 86%) from newspaper text. The remaining sen-
tences (778, or 14%) were part of the LXGram distribution
and consist of sentences used for regression testing of the
grammar.

4. Extracting Vistas
In this work we cover three vistas: the TreeBank, the De-
pendencyBank and the PropBank, A TreeBank vista is a
constituency tree, the familiar structure that represents the
various constituents of the sentence and their level of aggre-
gation. A DependencyBank vista, instead of giving a tree
structure describing syntactic constituency, is a graph that
relates pairs of words by a syntactic function (i.e. subject,
direct object, modifier, etc). The PropBank is a dataset sim-
ilar to the one described in (Kingsbury and Palmer, 2003) in
that it consists of a layer of semantic role annotation that is
added to phrases in the syntactic structure of the sentence.
The format of these extended nodes in the PropBank tree is
C-GF-SR, where C is the constituency tag, GF corresponds
to the grammatical function and SR to the semantic role.
What is important to note regarding these three vistas is
that the information contained in a PropBank is a super-set
of the information present in the other two vistas. Our ap-
proach is then to take the PropBank as the main vista since
the other two vistas, viz. the TreeBank and the Dependen-
cyBank, can in turn be obtained directly from it instead of
having to extract each of them independently from the deep
dataset.
For this we began by creating a PropBank extraction tool
that runs over the deep representations resulting from the
grammar-supported treebanking process. This tool makes
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use of the Tregex library created by the Stanford NLP
Group (Levy and Andrew, 2006),2 which provides a lan-
guage for pattern matching over tree structures and regular
expression matches over tree nodes.

4.1. PropBank Vista
The procedure that creates the PropBank consists of several
steps, each having to deal with non-trivial issues. These
steps are described in this Section.

4.1.1. Retrieving the Exported Tree
The deep representation of a sentence that is exported by
[incr tsdb()] at the end of the manual disambigua-
tion process includes the derivation tree, which encodes the
rules that were used by the grammar during analysis of that
sentence and the order in which they were applied. The
exported deep representation also includes a second tree
which has the same structure as the derivation tree, but
where the rule names have been mapped into syntactic cat-
egories. This second tree, which we will call the exported
tree, is taken by the tool as the starting point of the vista
extraction procedure.

4.1.2. Tokenization
Due to the inner workings of [incr tsdb()], the leafs
in the exported tree are all converted to lowercase and trun-
cated to the first 30 characters. Moreover, given the gram-
mar used, the original newspaper corpus that was tree-
banked contains information not present in the deep dataset
that has been created by the grammar (e.g. information on
named entities). Thus, in order not to lose this data, we
want it to be possible to incorporate it into the vistas. The
most straightforward way of fixing each leaf is to replace it
by the corresponding token from the original sentence.
For either of these procedures to work, leafs and tokens
must be aligned. However, there is not a one-to-one cor-
respondence between the leafs in the exported tree and the
tokens in the sentence due to the original corpus and the
grammar having different criteria for tokenization.
This is readily apparent in punctuation symbols, which are
still attached to words in the exported tree, while they are
found tokenized (i.e. detached from words) in the sentence.
Given that the purpose of the tokenization stage is only to
obtain a one-to-one correspondence between the leafs in the
exported tree and the tokens in the sentence, punctuation
symbols are simply detached from words and temporarily
placed in a newly created sister node. The process of mov-
ing the punctuation symbols to their correct position in the
final tree merits a slightly more detailed explanation and is
addressed further ahead

4.1.3. Feature Bundles
Following the tokenization step, the leafs in the exported
tree will be aligned one-to-one with the tokens from the
original corpus, which allows the tool to easily copy the
morpho-syntactic information from the corpus over to the
tree as feature bundles that are appended to the leafs.
Figure 2 shows the breakdown of a feature bundle into its
parts. Having the POS tag as a feature might at first seem

2Tregex website at http://nlp.stanford.edu/
software/tregex.shtml.

comprei︸ ︷︷ ︸
word

/ V︸︷︷︸
POS

: COMPRAR︸ ︷︷ ︸
lemma

: ppi-1s︸ ︷︷ ︸
inflection

: O︸︷︷︸
n.e.︸ ︷︷ ︸

feature bundle

Figure 2: Leaf with added feature bundle

unnecessary, since that information is given by the pre-
terminal node of the tree, but the POS tagset of the orig-
inal corpus is different from the one used by the grammar
and, in this way, no information is lost. Named-entity in-
formation is encoded using a tagset like the one from the
CoNLL shared task (Tjong Kim Sang, 2002): B is used for
the first word in an entity, and I for any subsequent words
in the same entity. A string representing the semantic type
of the entity (e.g. PER for person, LOC for location, etc.) is
appended. The letter O marks a word not belonging to any
named entities.
Note that, in the following examples, the feature bundles
appended to the leafs are not shown for the sake of read-
ability.

4.1.4. Moving Punctuation
Punctuation symbols were detached from words during to-
kenization and placed in a temporary position. The current
step is concerned with deciding where in the final tree to
place the node with the detached punctuation symbol since
its final position will depend on the syntactic construction
the symbol is a part of.
Coordination is represented as a recursive tree structure
where several constituents of the same type are combined
together. Usually, a comma is used to separate each con-
stituent, except for the last one which is delimited by an
explicit conjunction, such as e (Eng.: and), ou (Eng.: or),
etc.
As the example in Figure 3 shows, the comma is initially
attached to the final word in a constituent of the enumera-
tion. After being detached from the word, it is placed under
a new node (PNT) which is in an adjunction position to the
node to the right.
Appositions inside NPs are delimited by commas. This is
made explicit in the tree representation by placing the appo-
sition in a sub-tree that itself is delimited on either side by a
pair of matching punctuation nodes, as shown in Figure 4.
Parenthetical structures and quoted expressions are repre-
sented in a similar way. These are also the only situations
where ternary nodes are used.
In all other cases, such as sentence-ending punctuation and
topicalization, punctuation is adjoined far up as possible
without crossing constituent boundaries. Figure 6 shows an
example.

4.1.5. Collapsing Unary Chains
The syntactic representation of the exported tree contains
unary chains of nodes with the same label. As mentioned
above, this happens because the structure of the exported
syntactic tree mirrors that of the derivation tree, which rep-
resents the rules applied by the grammar. Each node in
these chains corresponds to the application of a unary mor-
phological rule by the grammar (cf. (Copestake, 2002, Sec-
tion 5.2) for more on such rules).
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Figure 3: Coordination
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Figure 4: Apposition

For instance, the unary chain of three N nodes that domi-
nates the word computadores (Eng.: computers) in Figure 5
corresponds, from the bottom up, to the application of the
following morphological rules: COMPUTADOR (the rule for
the lexical entry of the word), MASC-NOMINAL (flags a fea-
ture that marks the word as having gender inflection) and
PL-NOMINAL (flags a feature that marks the word as hav-
ing number inflection).
These various nodes in these unary chains are collapsed into
a single node in the final tree.

4.1.6. Adding Phonetically Null Items
Nodes marking null subjects (*NULL*), null heads (*EL-
LIPSIS*), traces of constituents (*GAP*) and tough objects
(*TOUGH*) are explicitly added to the final tree. There are
several details concerning this step that are worth pointing
out.
Pattern matching over the exported syntactic tree is not
enough to always detect where one should add the nodes
for phonetically null items. Instead, to do that, one must
look at the derivation tree, since the relevant information
can be found in the name of the derivation rule.
However, at this stage of processing, the syntactic tree and
the derivation tree, which began by being isomorphic, do
not have matching structures anymore, since the syntactic
tree has been altered (viz. when moving punctuation and
when collapsing unary chains). This issue was overcome by
decorating the nodes in the syntactic tree with information
taken from the derivation tree while both structures are still
isomorphic.

Having decorated the syntactic tree, adding tree branches
representing null subjects and null heads is quite straight-
forward.
Null subjects are found by looking for SNS nodes in the ex-
ported syntactic tree, which are the way the grammar cate-
gorizes a sentence with a null subject. However, to properly
assign a semantic role, the tool needs to look at the rule
name from the corresponding node in the derivation tree,
since the rule name indicates whether the missing NP-SJ
node is an expletive (no semantic role), a passive construc-
tion (ARG2), a causative alternation (ARGA) or falls under
the default case (ARG1).
Null heads are found by searching the derivation tree for
certain rule names. The rule name not only indicates the
category of the missing head (nominal or verbal) but also
whether the head is the left or right child of the node.
Figure 6 shows an example of a parse tree with a null sub-
ject and a null nominal head.
Nodes with a trace constituent are decorated by searching
the derivation tree for a rule that indicates the extraction
of a constituent and marking the corresponding node in the
syntactic tree. The rule name also indicates whether the
extracted constituent is on the left or on the right side of
the node. The category of the extracted constituent is given
by the usual HPSG slash notation, where a node labeled
with X/Y indicates a constituent of type X that is missing a
constituent of type Y.
When adding the trace, it suffices searching for the dec-
orated node and add the *GAP* node as its left of right
child, depending on the marking. In addition, the trace is
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Figure 6: Null subjects and null heads
(Eng.: Happens to everyone)

co-indexed with the displaced node by affixing the same in-
dex number to the trace and to the corresponding displaced
constituent, as shown in Figure 7.
The displaced node is found by following the path of
slashed constituents from the trace up to the topmost slash,
which is the sister node of the displaced node.
When the sister of the topmost slash is not of the expected
category it indicates a “tough” construction, and the trace
node is marked with *TOUGH*, as shown in Figure 8.

4.1.7. Extending Semantic Role Annotation
The semantic role tags present in some of the nodes are at a
different abstraction level than the constituency information
conveyed by the phrase labels and tree structure. In par-
ticular, some role annotations show cross-tree dependency,
where they need to refer to more than one constituent al-
though the exported trees do not make this explicit.
This is the case with complex predicates, such as modals,

auxiliaries and raising verbs. In such cases, the semantic
role tag is suffixed with “cp” (for complex predicate). An-
ticausative constructions are handled in a similar way, but
using “ac” as a suffix to the role tag.
For instance, the tree snippet shown in Figure 9 indicates
that, though the NP is the subject of the VP, it is not the
ARG1 of the head verb of the VP, but instead it is the ARG1
of some verb that is located down in the complex predicate
topped by the VP.
Arguments of control verbs are handled in a similar man-
ner, but one needs to look at the lexical type of the verb to
determine whether it is a subject, direct object or indirect
object control verb. To achieve this, the grammar lexicon
is used to map the derivation rule for the lexical entry of a
word (i.e. the pre-terminal node in the derivation tree) into
the corresponding lexical type.
For instance, the ARG11 tag in Figure 10 indicates that the
NP is both the subject of the control verb, querem (Eng.:
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Figure 10: Control verbs
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want), and subject in the clause occurring as direct object
of that verb.

4.2. TreeBank Vista
Having extracted the PropBank vista, the TreeBank vista is
straightforward to obtain by simply discarding all informa-
tion on grammatical function and semantic roles, leaving
only the lexical and phrasal constituency information in the
nodes of the tree.

4.3. DependencyBank Vista
To obtain the DependencyBank vista, one would like to
make use of the extracted PropBank vista as an intermedi-
ate representation since it has already gone through an ex-
tensive normalization process. Fortunately, this is possible
given that the trees that form the PropBank also include in-
formation on grammatical function in tags that are attached
to the labels of some constituency nodes (e.g. SJ for subject,
DO for direct object, M for modifier, etc). This gives us a
straightforward way to automatically extract a dependency
dataset from the PropBank.
Given that the PropBank adheres to an X-bar representa-
tion, phrasal nodes will have two children, one of which
will be marked with a grammatical function. The (head of
the) child that is marked is dependent on the (head of the)
other child under the given grammatical function. The head
of the phrasal node is the head of the unmarked child.
For instance, the tree fragment shown in Figure 11 yields a
dependency where the head of ZP depends on the head of
YP under relation F. The head of XP is the head of YP.
In the DependencyBank, displaced constituents are not rep-
resented by a *GAP* node. Instead, the head of the dis-
placed node is dominated by the governor of its co-indexed
node. For instance, in Figure 7 the head of the AP-PRD
constituent is dependent on the verb estava (Eng.: was).
For complex predicates and anticausative constructions, the
grammatical function tag is suffixed with the corresponding
tag (i.e. either “cp” or “ac”). For instance, in Figure 9, the
head of the NP is dependent on the head of the VP under
the SJcp relation.
This procedure is carried out by a second tool that takes the
PropBank as input and outputs the DependencyBank in the
format of dependency triples and also in the widely-used
CoNLL format (Nivre et al., 2007).

5. Evaluation
The extraction tool and the resulting vistas were evaluated
extrinsically by measuring the performance of constituency
and dependency probabilistic parsers trained over the cor-
responding vistas. The rationale for this approach being
that a high quality dataset, with a consistent representa-
tion, should allow training probabilistic parsers that per-
form with high accuracy.
Note that, for the purpose of linguistic studies, both the
TreeBank and the DependencyBank contain nodes that cor-
respond to phonetically null items. These items, however,
do not correspond to actual tokens that will appear in the
input to the parser. Accordingly, they are removed from the
TreeBank and DependencyBank vistas when training the

parsers. In the TreeBank, the branches formed by a pho-
netically null item and the pre-terminal node immediately
above it are pruned from the tree. Other information asso-
ciated with these items, such as co-indexes and the slash
notation used for traces, is also removed from the tree. In
the PropBank, any dependencies involving the null items
are discarded.
Since the focus is not on the development and tuning of the
parsers, we opted for simply taking freely available third-
party tools and running them out-of-the-box.
For constituency, we ran the Stanford parser (Klein and
Manning, 2003), using the default parameters, over the
5,422 sentences in the TreeBank. This parser induces sep-
arate models, one for phrase-structure and one for lexical
dependencies, which are then factored together during an-
notation. Following a standard 10-fold cross-validation ap-
proach, we obtained an 88% score under the Parseval met-
ric. This is on par with the performance scores obtained by
the same parser for English when training over the much
larger Wall Street Journal dataset.
For evaluating the DependencyBank, we used MSTParser
(McDonald et al., 2006), again using the default param-
eters. This parser works in two stages, the first assign-
ing unlabeled dependency edges which are then labeled in
the second stage using a sequence classifier. Under a 10-
fold cross-validation evaluation methodology, we obtained
a 87% labeled accuracy score, which is also a state-of-the-
art score for this task.

6. Conclusion and Final Remarks
In this paper we presented and assessed a procedure for ex-
tracting vistas from a core deep dataset.
Deep processing grammars provide rich, accurate and con-
sistent grammatical analyses for sentences, as well as
much-needed support for the effective treebanking of cor-
pora being annotated with rich linguistic information.
However, the output of such grammars may be too complex
and unwieldy for what is required by certain tasks, motivat-
ing the need for creating procedures that extract streamlined
and focused vistas. Such procedures allow taking a single,
deep dataset as a starting point, with all the linguistic rich-
ness and annotation consistency that it offers, and extract
subsets of the information contained in it.
For the work described in this paper, this core dataset is
composed of 5,422 sentences of mostly newspaper text.
It was created with the help of an HPSG deep process-
ing grammar by manual double-blind disambiguation of the
analyses produced by the grammar.
A tool was described that extracts a PropBank vista, a syn-
tactic structure where phrases are enriched with a layer of
semantic role annotation. The extracted PropBank was then
used as a super-vista from which TreeBank and Dependen-
cyBank vistas were in turn also extracted.
These latter two vistas were evaluated by training proba-
bilistic parsers over them, namely a constituency parser for
the TreeBank and a dependency parser for the Dependen-
cyBank. In both cases, under 10-fold cross-validation, the
parsers achieved state-of-the-art scores.
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Figure 11: Extracting dependencies
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Abstract
An important question for treebank development is whether high-quality conversion from one representation (e.g., dependency structure)
to another representation (e.g., phrase structure) is possible, assuming that annotation guidelines exist for both representations. In this
study, we demonstrate that the conversion is possible only under certain conditions, and even when the conditions are met, the conversion
is complex as we need to examine the two sets of guidelines on aphenomenon-by-phenomenon basis and provide an intermediate
representation for phenomena with incompatible analysis.

1. Introduction

There has been much interest in converting tree-
banks from one representation to another; for instance,
from phrase structure to dependency structure or from
phrase structure to other grammatical frameworks such
as LTAG, HPSG, CCG, or LFG. While there have been
many studies on converting between treebank repre-
sentations (Collins et al., 1999; Xia and Palmer, 2001;
Cahill et al., 2002; Nivre, 2003; Hockenmaier and
Steedman, 2007), it is not clear how well the proposed
conversion algorithms work because, for the treebanks
used in those studies, annotation guidelines are avail-
able only for one of the two representations.

Compared to other existing treebanks, the
Hindi/Urdu Treebank (HUTB) (Palmer et al.,
2009) is unusual in that it contains three layers: de-
pendency structure (DS), PropBank-style annotation
(PB) (Kingsbury et al., 2002) for predicate-argument
structure, and an independently motivated phrase-
structure (PS) annotation which is automatically
derived from the DS plus the PB. Because the tree-
bank has detailed guidelines for all three layers and
hundreds of guideline sentences with all three layers
manually annotated, the treebank is a good resource
for evaluating the performance of conversion algo-
rithms. More importantly, the DS guidelines and the
PS guidelines are based on different linguistic theories
and the DS and the PS, as two representations, have
different properties. While the idea of automatically
creating PS trees from the DS and PB is appealing as
it reduces the amount of human annotation, it raises
many interesting questions:

• Does ageneral-purpose, high-quality DS-to-PS
conversion algorithm exist? That is, an algorithm
that performs well for any given sets of DS and
PS guidelines?

• How much “freedom” do the designers of the DS
and PS guidelines have in choosing analyses for
linguistic phenomena?

• What kind of information should be included in
the DS and PB in order to make the automatic
conversion possible?

These questions are difficult to answer in the ab-
stract. In this paper, we discuss them in the context
of our experiences with the construction of the multi-
representational Hindi-Urdu Treebank which involves
automatic generation of the PS from the DS and PB.

2. An Overview of the HUTB
The HUTB (Palmer et al., 2009) has been developed by
our colleagues and us since 2008. It has three layers,
as explained below.

2.1. Dependency Structure (DS)

The HUTB chose the Paninian grammatical model
(Bharati et al., 1995; Begum et al., 2008) as the ba-
sis of the DS analysis. The sentence is treated as a se-
ries of modifier-modified relations which has a primary
modified (generally the main verb). The relations are
of two types: karaka (roles of various participants in
an action, i.e., arguments, notated as k1-k6) and others
(roles such as purpose and location, i.e. adjuncts).

2.2. Propbank (PB)

PropBanking is a semantic layer of annotation that
adds predicate argument structures to syntactic repre-
sentations (Palmer et al., 2005). For each verb, Prop-
Bank represents the information about the arguments
that appear with the verb in its corresponding frame
file. The arguments of the verbs are labeled using a
small set of numbered arguments, e.g. Arg0, Arg1,
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Arg2, etc. Additionally, verb modifiers are annotated
using functional tags such as ArgM-LOC, ArgM-TMP,
ArgM-MNR.

2.3. Phrase Structure (PS)

The PS guidelines are inspired by the Principles-and-
Parameters methodology of Chomsky (1981). PS as-
sumes a binary branching representation, where a min-
imal clause distinguishes at most two positions struc-
turally (the core arguments). Displacement of core ar-
guments from their canonical positions is represented
via traces.

2.4. Overall Process

The treebank has three sets of annotation guidelines,
one for each layer. The treebank is created in three
steps. The first step is the manual annotation of DS.
The second step is PropBanking, which focuses on
adding the lexical predicate-argument structure on the
top of DS. The third step is the automatic creation of
PS, which is done by a DS-to-PS conversion process
that takes DS and PropBank as input and generates PS
as output. Figure 1 shows the three layers for a simple
sentence. For the sake of saving space and readability
for non-Hindi speakers, Hindi sentences in this paper
are written as English words in Hindi word order.

(1) a. Ram liquor drank (’Ram drank liquor’)

b. DS tree:
drank

k1
Ram

k2
liquor

c. PB annotation:
Predicate: drank
Frame id: drink.1
Arg0: Ram
Arg1: liquor

d. PS tree:
VP

NP1

N1

Ram

VP-Pred

NP2

N2

liquor

V
drank

3. DS-to-PS Conversion
While the input to the process includes DS and PB, for
the sake of simplicity, in the rest of the paper we will
simply call the processDS-to-PS conversion, with the
understanding that theDS in this context also includes
information from the PB.

3.1. Previous work on DS-to-PS conversion

The common setting of a DS-to-PS conversion pro-
cess is given in Figure 1, which has three stages. In

the training stage, the input is a set of (DS, PS) pairs,
{(DSi, PSi)}; the output is a model, a set of conver-
sion rules, or something else depending on the conver-
sion algorithm. In the test stage, a DS tree,DSt, is sent
to the test module, along with the output of the training
stage; the test module produces a PS tree,PS

(0)
t . In the

evaluation stage, the output of the test stage is com-
pared with the gold standard,PSt, and some scores
(e.g., labeled F-score) are produced as a measure for
the overall performance of the conversion algorithm.

 DS

 Training

 PS

t
 PS

t DS

t

i

 PS i

(o)
 model

 score
 Eval Test

Figure 1: DS-to-PS conversion and evaluation

The previous DS-to-PS conversion algorithms can
be divided into two types depending on whether there
is an explicit training stage. In (Collins et al., 1999;
Xia and Palmer, 2001), the conversion algorithms were
purely rule-based: the rules were created by hand and
used to buildPS

(0)
t givenDSt; there was no training

stage. Xia et al. (2009) automated the conversion pro-
cess by introducing the concept ofconsistencybetween
a DS and a PS and proposing a process that extracts
conversion rules from consistent (DS, PS) pairs in the
training stage; in the test stage, the extracted rules were
applied to an inputDSt to generatePS

(0)
t . One lim-

itation of these previous studies is that they evaluated
their conversion algorithms on treebanks for which an-
notation guidelines and manual annotation exist only
for one of the two representations, and, therefore, it is
not clear how well the algorithms truly performed.

Bhatt et al. (2011) proposed an analytical frame-
work for determining how difficult it would be to con-
vert one representation to another representation (DS
and PS in this case) when each representation has its
own annotation guidelines. They demonstrated that the
conversion procedure must examine guidelines on a
phenomenon-by-phenomenon basis, and for each phe-
nomenon, there are three possible scenarios: (1) the
two guidelines havecompatibleanalyses; (2) they have
incompatible analyses; and (3) one represents the phe-
nomenon but the other does not. In the first case, au-
tomatic conversion is fairly direct; in the second case,
one needs to study the DS and PS analyses for the phe-
nomenon and provide an intermediate representation to
bring the gap; in the third case, additional information
is required to achieve the conversion.

Bhatt et al. (2011) definedcompatibilityof analyses
based onconsistencyof (DS,PS) pairs. As defined in
(Xia et al., 2009), a PS and a DS are calledconsistent
if and only if there exists an assignment of head words
for the internal nodes in PS such that after the flatten
operation and the label replacement operation, the new
PS is identical to the DS once we ignore the depen-
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dency types in the DS.1 For instance, the DS and the
PS in Ex (1) are consistent because when we chooseV
as the head child ofVP-Pred, andVP-Predas the head
child of VP, we will merge these three nodes in the
flatten operation and relabel the merged node with the
head worddrank; similarly, N1 andNP1 are merged
and relabeled asRam, andN2 andNP2 are merged
and relabeled asliquor. The resulting tree is identical
to the DS tree if we ignore the dependency types.

Given a linguistic phenomenon, letD be the set of
(DS, PS) pairs for the sentences in the guidelines for
that phenomenon. The analyses in the DS and PS
guidelines are calledcompatibleif and only if every
(DS, PS) pair inD is consistent.

3.2. Our conversion process
Before we get into the details of our conversion pro-
cess, it is important to address the first question raised
in Section 1.: does a general-purpose DS-to-PS con-
version algorithm exist that works well for any given
sets of DS and PS guidelines? Referring to the
flowchart in Figure 1, a conversion algorithm would
correspond to the training and test modules; the DS and
PS guidelines would correspond to(DSi/k, PSi/k)
pairs; ageneral-purpose, high-qualityalgorithm would
be one that producesPS

(0)
t that is very similar toPSt

and therefore leads to a high evaluation score, no mat-
ter what(DSi/k, PSi/k) pairs look like.

Note that the flowchart shows the same setting as
any machine learning (ML) system if we just replace
DSwith the input of a ML task (e.g.,sentencefor the
parsing task) and replacePSwith the output of an ML
task (e.g.,parse treefor the parsing task); therefore,
in theory, it is possible that one can build a general-
purpose, high-quality conversion algorithm, just like
one can build a good statistical parser. On the other
hand, while it is likely that a small number of (DS,
PS) pairs exist for the language of our interest (e.g.,
trees for sentences in the annotation guidelines), we
cannot assume that the number of pairs would be very
large (say tens or hundreds of thousand pairs) because
if there are so many (DS, PS) pairs available, DS-to-
PS conversion is no longer important as one can easily
create a PS treebank from these pairs. Just like there
does not exist a general-purpose parser that performs
well when trained on a few hundreds of (sentence,
parse tree) pairs, we doubt that there exists a general-
purpose DS-to-PS conversion algorithm that performs
well whentrained on a few hundreds (DS, PS) pairs,
because, in the worst scenario, the analyses chosen by
the DS and PS guidelines for linguistic phenomena can
be so different that building PS from a given DS is not
much easier than building a parse tree from a sentence.

Instead, we believe that high-quality DS-to-PS con-
version is possible only if all of the following con-

1Theflattenoperation merges all the internal nodes in the
PS with their head child; thelabel replacementoperation re-
places the label of an internal node with its head word.

ditions hold: (1) the analyses chosen by DS and PS
guidelines for most linguistic phenomena are compati-
ble; (2) for the phenomena with incompatible analyses,
the incompatibility can be resolved by simple transfor-
mations; and (3) for phenomena that are represented
in the PS but not in the DS, the additional information
needed to build PS is available from the PB or other
sources.

If these conditions hold, high-quality DS-to-PS con-
version is possible. Our conversion process for creat-
ing a PS from DS plus PB is illustrated in Figure 2.2 It
has two main modules: the first module handles phe-
nomena with incompatible DS/PS analyses or phenom-
ena represented only in the PS analyses. The input are
DS and PB, and the output is a new, “extended” depen-
dency structure calledDS+. DS+ should be consistent
with the desired PS according to the PS guidelines.

create
rules
apply

 DS+

 DS+
 DS

 PB
 PS

 conversion rules

Figure 2: Building PS from DS and PB

The second module creates the PS fromDS+ by ap-
plying conversion rules. Theconversion ruleis a (DS-
pattern, PS-pattern) pair, which says the DS pattern in
a DS would correspond to the PS pattern in a PS tree.
Figure 3 shows two conversion rules that will be used
to create the PS in (1d) from the DS in (1b). The first
rule says that when a verb in a DS has a leftk1 depen-
dent whose head is a noun, the corresponding PS will
have aVP node, which has anNP child followed by
a VP-Predchild. The second rule is interpreted simi-
larly. The conversion rules can be created by hand or
extracted from consistent (DS, PS) pairs. The formal
definition of conversion rules and the algorithms for
extracting rules from (DS,PS) pairs and applying rules
to generate a PS were discussed in (Xia et al., 2009).

V

N NP

VP V

N VNP

(a) (b) 

k1

VP-Pred

k2
VP-Pred

Figure 3: Two conversion rules

4. Handling incompatibility
As discussed in the previous section, we propose to use
DS+ to handle phenomena with incompatible DS and
PS analyses. The question is what DS+ should look
like and how it can be created from the input DS and
PB. In order to answer the question, we first need to
understand the main sources of incompatibility. We
will then go over seven linguistic phenomena that have

2This corresponds to the test stage in Figure 1.
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incompatible analyses in the HUTB and show the cor-
responding DS+.

4.1. Main sources of incompatibility

Given that DS and PS guidelines are often based on
different linguistic theories, there can be many reasons
for incompatibility between the DS and PS analyses.
Some instances of incompatibility could be acciden-
tal in that the DS and the PS might just choose dis-
tinct analyses even though in principle they could have
picked the same analysis. Since we have developed the
DS and PS guidelines in tandem, we have attempted to
minimize the accidental incompatibilities. That leaves
us with the more deep-seated sources of incompatibil-
ity. Here, we discuss three main reasons that cover the
majority of such incompatibility in the HUTB.

The first reason is that one side chooses to represent
certain relationships or distinctions, but the other does
not. One example is the unaccusative vs. unergative
distinction, which is represented in PS, not in DS. In
order to create the desired PS, the list of unaccusative
verbs has to be available from other sources, and in the
HUTB that information comes from the PB.

The second reason is due to different representa-
tional vehicles that are available in DS and PS. In
the HUTB, DS represents information through struc-
tural means, dependency labels (e.g., k1 and k2), or
attributes in the nodes. PS represents information
through structural means, syntactic labels (e.g.,NP),
and coindexation (e.g., between a trace and its an-
tecedent). Consequently, the DS and the PS could rep-
resent the same information, but through different ve-
hicles. The corresponding DS and PS trees could end
up being inconsistent, because the definitions of con-
sistency and compatibility look at tree structure only.
In the HUTB, the analyses for passive, small clause,
support verb, and causative fall into this category.

The third reason is due to the differences in han-
dling word order by the DS and the PS.3 The DS in the
HUTB allows for non-projective trees and it does not
have a notion of canonical word order. In contrast, the
PS tree in the HUTB must be projective and it assumes
that the core arguments are generated in distinguished
structural positions which implies that there is an in-
herent notion of canonical word order. Consequently
any DS trees that are non-projective or in which core
arguments appear in non-canonical word order would
be inconsistent with the corresponding PS trees.

4.2. Unaccusatives vs. Unergatives

In the HUTB, the DS treats all intransitives alike while
the PS makes a structural distinction between unerga-
tives and unaccusatives: the PS treats the subject of an
unaccusative as originating in the object position, as

3This can be seen as a special case of the first reason; that
is, the PS represents word order, whereas DS does not. But
because word order is so salient and common, we treat this
as a separate case.

indicated by the empty categoryCASEand the coin-
dexation between the subject and the object positions;
the PS treats the subject of an unergative as originat-
ing in the subject position and there is no movement
involved. Two examples are given in Ex (2) and (3).

(2) unaccusative: The door opened.

a. DS tree:
opened

k1
the-door

b. PS Tree:

VP

NP1

the-door

VP-Pred

NP

CASE1

V
opened

c. DS+ tree:

opened

k11

the-door
k2

CASE1

(3) Unergative: John laughed.

a. DS tree:
laughed

k1
John

b. PS Tree:

VP

NP

John

VP-Pred

V
laughed

For automatic conversion to be a possibility, infor-
mation about whether a given verb is unergative or un-
accusative needs to be available. In the HUTB, that
information is provided in the PB. The next question is
what DS+ looks like. One intuition is that DS+ should
include all the empty categories (ECs) appearing in the
PS. In this case, we need to insertCASEto the DS+.
Based on the DS and PS trees in Ex (2),V is the head
child of VP-Pred; therefore,CASEshould depend on
openedin the DS+. As for its dependency type,CASE
is in the canonical object position in the PS, and the
dependency type for that position isk2 in general, as
shown in the second rule in Figure 3. Therefore, we
will insert CASEas a dependent ofopenedwith the
typek2, and we use coindexation to link the EC and its
antecedent. The resulting tree is in Ex (2c). In contrast,
unergatives do not require DS+ (that is, its DS+ is the
same as DS).
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4.3. Passive

In the HUTB, both DS and PS indicate that the sub-
ject of the passive is related to the object position: the
DS uses dependency typek2, and the PS uses the EC
CASEand the coindexation between the subject and
the object positions, as shown in Ex (4).4

(4) The apple eaten was (’The apple was eaten’)

a. DS tree:
eaten

k2
the-apple

lwg-aux
was

b. PS Tree:
VP

VP

NP1

the-apple

VP-Pred

NP

CASE1

V
eaten

V
was

c. DS+ Tree:
eaten

k11

the-apple
k2

CASE1

lwg-aux
was

To detect passive is easy because a passive verb in the
DS has a featurepassive=’+’. The DS+ for passive
is similar to the one for unaccusative except that we
change the dependency type ofthe applefrom k2 to k1
because the phrase is in the canonical subject position
in the PS, not the canonical object position.

4.4. Small clause and support verb

The two phenomena we have discussed so far involve
only one predicate (the unaccusative verb or the pas-
sivized verb) in both DS and PS. Small clauses are dif-
ferent in that they involve two predicates, as shown in
Ex (5): considerand smart. John is related to both
predicates: it gets case fromconsiderand semantically
it is an argument ofsmart.

Both the DS and the PS represent these relations,
but they do so in different ways. The DS represents
the first relation by makingJohna dependent ofcon-
sider; it represents the second relation by using the de-
pendency typek2s for smart, andk2sencodes the in-
formation that its semantic argument has the labelk2.
The PS represents the two relations by inserting an EC
CASEand coindexing it withJohn, and thus represents
both relations structurally. Creating DS+ is simple; we
just need to insert an ECCASEas ak1 dependent of
smartand coindex it withJohn.

4The dependency typelwg-aux indicates thatwas is an
auxiliary verb, and the word and its headeatenform a local
word group (lwg)

(5) I John smart consider (’I consider John smart’)

a. DS tree:
consider

k1
I

k2
John

k2s
smart

b. PS tree:
VP

NP

I

VP-Pred

NP1

John

V’

SC-A

NP

CASE1

AP

smart

V
consider

c. DS+ tree:
consider

k1
I

k21

John
k2s

smart

k1
CASE1

In the support verb construction, a verb and a noun
form a complex predicate. An example isJohn bicycle
theft did (’John stole a bicyle’), wheredid and theft
form a complex predicate. Our treatment of support
verb is similar to that of small clauses.

4.5. Causatives

Causative is another example where DS and PS rep-
resent the same information through different means.
An example is given in Ex (6). The DS analyzes the
causativized verb as a single head, but it labels the
causerJohn as pk1 (not k1), indicating thatJohn is
not really an argument ofcut, but an argument of the
causative part ofcut-CAUSE. The PS represents the
causativized verb as two independent heads: an EC,
CAUSE, as the head of the higher clause, and the orig-
inal verb as the head of the lower clause. In addition,
the PS indicates the implicit intermediate agent explic-
itly as an EC,IMP-ARG(implicit argument).

(6) John the-tree cut-CAUSE (’John caused the
tree to be cut’.)

a. DS tree:
cut-CAUSE

pk1
John

k2
the-tree

b. PS tree:
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VP

NP

John

VP-Pred

VP

NP

IMP-ARG

VP-Pred

NP

the-tree

V
cut-cause

V
CAUSE

c. DS+ tree:

CAUSE

k1
John

k2
cut-CAUSE

k1
IMP-ARG

k2
the-tree

To create DS+, we insert two ECs:CAUSE, as the head
of the higher clause, and another EC,IMP-ARGas a
k1 dependent of the lower clause. Furthermore, the
causee becomes a dependent ofCAUSEand its label is
changed frompk1to k1.

4.6. Movement

The last type of divergences involve the treatment of
movement. In HUTB, the DS is not concerned about
non-canonical word order; sentences with different
word orders will have the same DS if we treat the DS
as an unordered tree. In contrast, the PS assumes that
the dependents of a head have a canonical order and if
they are not in the canonical order, that is due to syn-
tactic movement which is represented by an EC in the
base position and a coindex between the base position
and the surface position. An example is in Ex (7).

(7) apple John ate (’John ate an apple’)

a. DS tree:
ate

k2
apple

k1
John

b. PS tree:

VP

NP1

apple

VP

NP

John

VP-Pred

NP

SCR1

V

ate

c. DS+

ate

Suf-SCR1
apple

k1
John

k2
SCR1

To create DS+ for this example, we need to know
the canonical order of arguments of a verb. In Hindi,
the order isk1, k4, k2, verb. By checking the word or-
der in the sentence, we can detect the predicates whose
dependents are not in the canonical order. We then
use simple heuristics to determine which dependent is
moved(in this case, it isk2). Next, we insert an EC
SCRto DS+ as ak2 dependent of the verb, replace the
label ofapplefrom k2 to a new dependency typeSuf-
SCR(for the surface position of a scrambled element),
and coindex the EC withapple.

Movement in Ex (7) does not cause non-projectivity,
because it does not cross the boundary of the clause.
When movement crosses a clause boundary, its DS tree
will be non-projective, see Ex (8).

(8) apple, John eat want (’John wants to eat an ap-
ple’)

a. DS tree:5

want

k1
John

k2
eat

k1
PRO

k2
apple

b. PS tree:
VP

NP1

apple

VP

NP

John

VP-Pred

V

wants

VP

NP

PRO

VP-Pred

V

eat

NP

SCR1

c. DS+ tree:
want

Suf-SCR1
apple

k1
John

k2
eat

k1
PRO

k2
SCR1

Detecting non-projectivity is trivial given the original
sentence and the DS. The creation of DS+ is similar
to the process for the local movement, except that the

5The EC, PRO, is actually added by the PB.
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moved element (applein this example) will be moved
up along the path from its parent to the root of the DS
until its new position resolves the non-projectivity. In
this example,applebecomes a child ofwant in DS+.
Its dependency relation toeat is implicit as its trace
SCRdepends oneat.

Most movement in Hindi is to the left, as in Ex (7)
and (8). But movement to the right is possible. The
creation of DS+ for rightward movement is not dis-
cussed here due to the limitation of space.

4.7. Combinations

So far we have discussed seven phenomena where DS+
is needed to bridge the differences between DS and PS
analyses. For each phenomenon, we have created a
rule (i.e., a piece of code) that detects the phenomenon
in a given DS plus PB and builds the DS+ accordingly.

Some of these phenomena can co-occur to the same
predicate and its dependents in a DS; for instance, the
arguments of a causative verb can undergo leftward
or rightward movement (’a book John caused Mary to
be given’); the main verb in a small clause construc-
tion can be passivized (e.g., ‘John is considered intel-
ligent’). We call themcombinationsof phenomena.
The question is whether we can handle such combi-
nations without writing more rules. In other words, (1)
what combinations of phenomena are possible? (2) For
these combinations, can the correct DS+ be created by
applying the rules for individual phenomena in a cer-
tain order? (3) If so, what should the order be?

For the first question, some combinations are im-
possible. For instance, an unaccusative verb (e.g.,
break in ’window broke’) lacks an external argument
and cannot be passivized, so unaccusative + passive
does not exist. Based on our observations on gram-
maticality of various combinations, we group the seven
phenomena into five groups so that all the possible
combinations consist of at most one phenomenon from
each group:

• Group 1: unaccusative, passive
• Group 2: small clause, support verb
• Group 3: causative
• Group 4: rightward movement
• Group 5: leftward movement

We show that the answer to the second question is
yesby using the ordering based on the five groups; that
is, applying the two rules in Group 1 first, followed by
the rules for Group 2, 3, 4, and 5. This is the same
order if we sort the rules based on the size of the re-
gion affected by the rules: Rules in Group 1 only af-
fect a simple clause; rules in Group 2 affect a clause
that contains a small clause; the rule in Group 3 affects
a higher clause and a lower clause; the rules in Groups
4 and 5 can affect multiple clauses as movement can
cross clause boundaries.6

6Note that not all the orderings would yield the desired
PS. For instance, leftward movement (group 5) should be

Now that we have fixed the ordering of the rules, we
test whether applying rules in that order would produce
the desired DS+. It turns out that the answer is indeed
affirmative. Due to the limitation of space, we will just
show an example. In (9), (b) and (c) are the input DS
and the desired PS, respectively; (d) is the resulting
DS+ after applying the rule for causative to (b); (e) is
the resulting DS+ after applying the rule for leftward
movement to (d), and it is indeed the DS+ that we want
to create and it is consistent with the PS.

(9) a. tree John cut-CAUS (’John caused the tree
to be cut’)

b. DS:
cut-CAUS

k2
tree

pk1
John

c. PS:

VP

NP1

tree

VP

NP

John

VP-Pred

VP

NP

IMPARG

VP-Pred

NP

SCR1

V

cut-CAUS

V

CAUS

d. DS+ after applying the causative rule to (b):
CAUS

k1
John

k2
cut-CAUS

k1
IMPARG

k2
tree

e. DS+ after applying the leftward movement rule
to (d):

CAUS

Suf-SCRi
tree

k1
John

k2
cut-CAUS

k1
IMPARG

k2
SCRi

handled after rightward movement (group 4) because in the
DS+ for rightward movement, a trace for the moved element
needs to be immediately before the verb, which might not be
the canonical position for that element and this can trigger
leftward movement.
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5. Discussion

The previous section went over seven phenomena for
which DS and PS analyses are incompatible. Due to
the limit of space, we used very simple examples and
did not explain all the details. These details mean that
the step of creating DS+ can be very complex; it re-
quires manually going through all the phenomena with
incompatible DS and PS analyses, and for each phe-
nomenon determining what are the diagnostic tests for
detecting the phenomenon and what DS+ should look
like, and then writing rules to build the DS+. Further-
more, one needs to check whether or not the combina-
tions of phenomena can be handled by applying rules
in a particular order. Now we are ready to address the
questions raised in Section 1.

First, a general-purpose, high-quality DS-to-PS con-
version algorithm is unlikely to exist, because the num-
ber of (DS, PS) pairs is too small for building a statisti-
cal system; consequently, any high-quality conversion
would require manual comparison of DS and PS anal-
yses for each linguistic phenomenon; this process is
time consuming and cannot be fully automated.

Second, the DS and PS guideline designers have
some freedom in choosing analyses for linguistic phe-
nomena, because DS+ serves as a vehicle to bridge
the gap between the DS and PS analyses. However,
the bigger the gap is, the more complex the module
for creating DS+ will be. Therefore, when DS and PS
guideline designers choose incompatible analyses, the
decisions should be well-motivated.

Third, as shown in Figure 2, the input to the conver-
sion process are (1) a set of sentences with three layers
of annotation, which is used for extracting conversion
rules, (2) the sentences with DS and PB annotation for
which PS will be created, (3) rules manually-crafted
for creating DS+. In order to create the desired PS, any
information needed to form the PS has to be available
in (1), (2), or (3).

6. Conclusion

An important question for treebank development is
whether high-quality conversion from one representa-
tion to another representation (e.g., PS) is possible, as-
suming that annotation guidelines exist for both repre-
sentations. In this study, we focus on DS-to-PS conver-
sion, and demonstrate that conversion is possible only
when certain conditions are met. We propose to use
DS+ as a vehicle to bridge the gap between DS and
PS analyses. When these conditions are met, PS can
be created in two steps: creating DS+ from the input
DS plus PB and generating PS from DS+. We then go
over seven phenomena in the HUTB for which DS+
is needed, and show that creating DS+ is complex and
cannot be fully automated. For future work, we will
test our conversion process on the HUTB and evaluate
the system performance on a small portion of the tree-
bank where all three layers are manually annotated.
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Abstract
The aim here is to create a dependency treebank from a phrase-structure treebank for Arabic. Arabic has a number of characteristics,
described below, which make it particularly challenging to any natural language processing (NLP) applications. We describe an encour-
aging semi-automatic technique for converting phrase-structure trees to dependency trees by using a head percolation table.
One of the most significant challenges here is the determination of the head of each subtree. We therefore examined different versions
of the head percolation table to find the best priority list for each entry in the table. Given that there is no absolute measure of the
‘correctness’ of a conversion of a phrase structure tree to dependency form, we tested the various transformations by seeing how well a
state-of-the-art dependency parser learnt the generalisations that were embodied by the converted trees.

1. Introduction
In recent years, dependency parsing has become widely
used in machine translation, question answering, relation
extraction and many other natural language processing
(NLP) applications (Kübler et al., 2009) for a number of
reasons.

• It provides uniform treatments for a wide range of ty-
pologically different languages, since it hides differ-
ences that arise from different surface word orders and
emphasises the functional relations between words,
which tend to be similar across languages.

• It can be useful for semantics. It supports composi-
tional semantics, since it can be easier to attach com-
positional rules directly to lexical items than to assign
them to large numbers of phrase-structure rules ; and
it supports less formal approaches to semantics, e.g.
via textual entailment (Dagan et al., 2005), since it is
easier to generalise dependency trees as the basis of
approximate inference rules than to use phrase struc-
ture rules for this purpose.

• It is possible to induce robust and fairly accurate de-
pendency parsers, e.g. MSTParser (McDonald and
Pereira, 2006; Nivre et al., 2010) and MALTParser
(Nivre et al., 2006; Nivre et al., 2010), from treebanks
of suitably annotated dependency trees.

Our ultimate goal is to develop a textual entailment (TE)
system for Arabic (Alabbas, 2011). An efficient technique
to check entailment between two sentences is using Tree
Edit Distance (TED) (Bille, 2005) matching technique be-
tween dependency trees the two sentences (Kouylekov and
Magnini, 2005; Heilman and Smith, 2010). We therefore
need to be able to obtain dependency trees by parsing in-
put Arabic texts, and hence we need dependency treebanks
for training our dependency parsers (e.g. MSTParser or
MALTParser).
The focus of the current paper is on the nature of the train-
ing data. Dependency grammar is a general framework,

with a myriad major and minor variations. The distinctions
between different versions of dependency grammar are usu-
ally debated in terms of their linguistic adequacy, but it is
likely that different sets of dependency relations will pro-
duce different levels of accuracy when used for inducing
parsers. In particular, we want to investigate the effects of
different ways of turning the phrase structure trees in the
Penn Arabic Treebank (PATB), which is the largest easily
available set of training data for Arabic, into dependency
trees.
The three best-known Arabic treebanking efforts are the
Penn Arabic Treebank (PATB) (Maamouri and Bies, 2004),
the Prague Arabic Dependency Treebank (PADT) (Smrž et
al., 2008) and Columbia Arabic Treebank (CATiB) (Habash
and Roth, 2009). PATB is a phrase-structure treebank,
whereas the others are dependency treebanks. PATB and
PADT are annotated with rich morphological informa-
tion, very fine-grained part-of-speech (POS) tags, seman-
tic roles, diacritisation and lemmas. This allows these tree-
banks to be used for training different natural language pro-
cessing applications (e.g. tokenisation, POS tagging, di-
acritisation, morphological disambiguation and others) as
well as parsing (Habash and Roth, 2009). In contrast, much
of the detailed morphological and POS information is not
provided in CATiB. The use of any of these treebanks as
training data raises problems:

• The trees in PATB are phrase-structure trees, and
hence are not directly useable for training dependency
parsers.

• PADT uses very fine-grained POS labels, and there is
no readily available tagger for assigning PADT labels
(personal correspondence with the PADT designer).

• CATiB uses a very coarse-grained set of just 6 POS
labels. In particular, all verbs are grouped under a sin-
gle heading (i.e. VRB), with no distinction between
present and past; and all nominals are also grouped to-
gether (i.e. NOM), with no distinction between nouns
or numbers, or even between definite and indefinite
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forms. Other researchers have noted that dependency
parsers can cope with very coarse-grained POS tags,
but the loss of this information makes the trees in
CATiB unsuitable for our underlying goal of inferring
TE rules from trees.

Of the three, PATB seemed most suitable for our purposes,
since we have taggers that can assign the tags used in PATB
and the information it contains is what we need for inferring
TE rules. We therefore need to convert PATB trees to de-
pendency trees, which we do by using the standard phrase-
structure to dependency transformation algorithm (given
in Figure 1), using a percolation table to choose the head
daughter in the phrase-structure tree.
This raises an interesting question: since PATB does not
explicitly embody a notion of the ‘head’ of a tree, we have
some freedom about how to construct the percolation table.
Should the head of an NP be the main noun or the deter-
miner? Should the head of a verbless sentence be the sub-
ject or the predicate? Should the head of a conjoined phrase
be the conjunction itself or the head of the first conjunct?
There are theoretical grounds for choosing one way of an-
swering these questions rather than another, but they also
have empirical consequences. It seems likely that one set of
choices will provide the parsers with a more easily recog-
nisable set of dependency relations than another. It may
turn out that the parsers perform best with a set of trees
that were obtained using a theoretically unappealing per-
colation table (e.g. we will see in Section 4. that choos-
ing the first conjunct of a conjoined pair produces better
results than choosing the conjunction itself, but it is much
easier to obtain a formal interpretation from trees where the
conjunction is the head (Gazdar, 1980)). It is, however, a
straightforward matter to transform trees that based on one
notion of conjunction to ones based on another, so from a
practical point of view we want to find the percolation table
that allows the parsers to produce the most accurate results.

2. The challenges of Arabic
The key problem for Arabic is that it is massively more
ambiguous than English, for reasons described below.

Lexical ambiguity:

• Arabic is written without diacritics (short vowels), of-
ten leading to several ambiguities. This makes analy-
sis of the language morphologically very complex and
difficult (i.e. a single written form corresponding to as
many as ten different lexemes). For instance, the fol-
lowing table shows the Arabic word ÕÎ« ςlm1 , which
has 7 different reading with diacritics marks.

• Arabic also contains numerous clitic items (preposi-
tions, pronouns and conjunctions), so that it is often
difficult to determine just what items are present in
the first place. For example the word úÍ@ð wAlý can

be analyzed as ú
Í@ð wAly “ruler”, ø
 +úÍ@+ð w+Alý+y

“and to me”, ú
Í

@+ð w+Âly “and I follow”, ø
 +È

�
@+ð

1The transcription of Arabic examples follows Habash-Soudi-
Buckwalter (HSB) (Habash et al., 2007).

Arabic diacritics word Meaning
�Õ
�
Î«� ςilmũ knowledge

�Õ
�
Î �« ςalamũ flag
�ÕÎ�
�« ςalima knew

�ÕÎ�
�« ςulima is known

�Õ
��
Î �« ςal∼ama taught

�Õ
��
Î �« ςal∼im teach!

�Õ
��
Î �« ςul∼ima is taught

Table 1: ambiguity caused by the lack of diacritics.

w+Āl+y “and my clan” or ú
Í
�
@+ð w+Āly “and auto-

matic” (Habash, 2010). Each of these cases has a dif-
ferent diacritisation.

Syntactic ambiguity:

• Arabic has a comparatively free word order, with
VSO, VOS, SVO and OVS all being possible orders
for the arguments of a transitive verb under appropri-
ate conditions (Alabbas and Ramsay, 2011a).

• It is a pro-drop language. The subject can be omit-
ted, leaving any syntactic parser with the challenge
to decide whether or not there is an omitted pro-
noun in the subject position. For example, the Arabic
sentence �ék. Ag. YË@ �IÊ¿ @ Aklt AldjAjh̄ “ate(feminine)
the-chicken” has two different interpretations–“The
chicken ate” or “(She) ate the chicken” (Attia, 2008).

• Nouns can be used as adjectives, or as possessive de-
terminers (in so-called ‘construct phrases’), with typi-
cally little inflectional morphology to mark such uses
(Alabbas and Ramsay, 2011b). For instance,the Ara-
bic construct phrase �èPAJ
�Ë@ iJ
�KA 	®Ó mfAtyH AlsyArh̄
has many comparables in English: “the keys of the
car” or “the car’s keys” or “the car keys” (Habash,
2010). In this example, the word �èPAJ
�Ë@ AlsyArh̄ spec-
ifies, defines, limits or explains the particular identity
of the word iJ
�KA 	®Ó mfAtyH.

• The copula is omitted in simple positive equational
sentences, so that a sequence of a noun and a predica-
tive item (i.e. another noun, an adjective or a PP) may
make a sentence. For instance, the Arabic equational
sentence �I�
J. Ë @ ú


	̄ YËñË@ (Alwld fy Albyt: “The boy (is)

in the house.”) has a PP predicate �I�
J. Ë @ ú

	̄ (fy Albyt:

“in the-house”).

3. From PATB to dependency trees
We used PATB Part 1 v3.0 as a resource that provides us
with annotations of Arabic at different levels of structure
(at the word, the phrase and the sentence levels). PATB
is annotated for part-of-speech (POS), morphological dis-
ambiguation and for syntactic structure. It also provides
diacritisations, empty categories, some semantic tags and
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lemma choice. Because PATB is already tagged, the effects
of lexical ambiguity are substantially reduced–we know
which items are nouns and which are verbs, and we know
about the clitics that have been attached to them. We still
have no information about transitivity, which is itself a
problem for parsing, but the gross lexical ambiguity that
is brought about by the lack of diacritics in Modern Stan-
dard Arabic (MSA) has been eliminated. The PATB in-
cludes 734 stories representing 145,386 words (166,068 to-
kens after clitic segmentation; the number of Arabic tokens
is 123,796). The sentences in PATB, which contains just
over 5000 phrase-structure trees, are fairly long–the aver-
age sentence length is around 28 words per tree, with some
trees containing 100+ words.
Converting phrase-structure trees to dependency trees is a
straightforward task, so long as (i) you can identify the item
in each subtree which contains the head, and (ii) there are
no constructions with zero-heads. Assuming that these two
conditions hold, the algorithm in Figure 1 will convert a
phrase-structure tree to a dependency tree.

1. if you’re looking at a leaf node, turn it into a tree with
no daughters;

2. (a) otherwise, choose the subtree which contains the
head: turn it into a dependency tree: call this D;

(b) turn all the other subtrees into dependency trees,
and add them as daughters of D.

Figure 1: From phrase-structure trees to dependency trees

The only difficult part of this algorithm, which has been
discussed by (Xia and Palmer, 2001), is the selection of the
subtree which contains the head. The approach we have
taken to this task is to look for all the trees headed by a
given label, and find all the labels for their subtrees. This
gives us a list of labels for potential head daughters for
each non-terminal label (a ‘head percolation table’ (Collins,
1997)). We then order these in terms of candidacy for being
the head daughter, in terms of what we believe to be the cor-
rect dependency structure, and we use this preference order
for ‘choose the subtree which contains the head: turn it into
a dependency tree’ in the above algorithm. For instance, in
the head percolation table the entry (S left VP) means that
the head child of an S is the first child of the S from the left
with the label VP.
Here, the head percolation table is semi-automatically gen-
erated from PATB by grouping the related tags in one tag
and then finding the possible heads for each one. After that,
for each table’s entry we order the possible heads manually
according to its priority2. Then, the above algorithm is used
to generate the dependency tree recursively. We used six
dependency relations as an initial step to construct our tree-
bank. These relations are: SBJ (subject), OBJ (object),
ROOT (root), COORD (coordinate), PX (punctuation)
and DEP (dependent). The full percolation table is avail-
able in a longer version of this paper which can be found at
http://www.cs.man.ac.uk/˜alabbasm/.

2The consequences of using different versions of the percola-
tion table are discussed in Section 4.

There are, however, a number of problems that arise when
applying this algorithm to PATB:

• Very large numbers of Arabic sentences begin with the
conjunction +ð w+ “and”. The most plausible read-
ing is that this item implicitly conjoins the first clause
in the current sentence to the previous sentence, and
hence should be taken as its head. To take account
of the difference between this use of conjunctions and
their more normal use for joining two constituents we
mark sentence-initial +ð w+ “and” with a special tag
(i.e. ICONJ) to prevent the parsers confusing it with
more normal conjunctive uses of this item. By doing
this, the parser’s accuracy is improved by around 0.4%
as shown in Section 4.

• PATB deals with free word-order by using traces, as-
suming in particular that the structure of SVO sen-
tences is something like [NP, [V, trace, O]],
with the topicalised NP cancelling the trace. This
doesn’t really make sense within a dependency-based
framework. The use of traces is antithetical to the ba-
sic idea of dependency grammar, namely that syntactic
structure is determined by relations between words: a
trace is not a word, and as such has no place in de-
pendency grammar, at least as strictly conceived (e.g.
by Hudson (1984)). We therefore systematically trans-
form PATB so that traces are eliminated, with the top-
icalised NP treated as a proper constituent of the sen-
tence.

• Arabic allows ‘verbless’ or ‘equational’ sentences,
consisting of an NP and some kind of predication (an-
other NP, a PP, an adjective). It is tempting to think
of these constructions as containing a zero-copula (the
fact that their negated forms do include an explicit
copula supports this analysis). As noted before, we
prefer to eliminate empty items, especially heads. We
therefore have to choose whether to make the subject
or the predicate of such sentences the head daughter.
Our empirical findings show that making the subject
the head gives better results than the reverse, as shown
in Section 4.

• PATB uses a very fine-grained set of tags, which
carry a great deal of syntactically relevant information
(particularly case-marking). This tagset contains 306
tags, with for instance 47 tags for different kinds of
verb and 44 for different kinds of noun. Unfortunately
it is difficult to extract this information using a tagger.
In particular, case-marking, and to a lesser extent
number and gender marking, in Arabic is carried by
diacritics which are unwritten in normal text. Thus
the only way to extract this information is by making
guesses based on the syntactic context. Given that
the task of the parser is to determine the syntactic
context, it is hard to see how reliable guesses about it
can be made prior to parsing. Marton et al. (2010),
for instance, note that adding the case-marking tags
supplied by MADA (Habash et al., 2009b) actually
decreases the accuracy, because the parser gives
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Figure 2: Comparing PATB phrase-structure and dependency format (without POS tags and labels) in PADT, CATiB and
our preferred conversion for the sentence: ú
æ

	�AÖÏ @ ÈñÊK
 @ ú

	̄ AK
Pñ�ð 	àA 	JJ. Ë @ðP@ 	P l�'A� 	Ë@ 	àñ�Ô 	g xmswn Alf sA’H zArwA lbnAn

w+swryA fy Aylwl AlmaDy “Fifty thousand tourists visited Lebanon and Syria last September.”(we deleted the POS tags
and dependency relations from dependency trees to compare the trees structures only).

considerable weight to them, but the tagger only
manages to assign them correctly in 86% of cases. A
feature which is both significant and hard to determine
is not something you want to depend on.
We therefore collapsed this set to a coarse-grained
set with 39 distinct tags (e.g. the fine-grained tags
NOUN+CASE DEF ACC, NOUN+CASE DEF GEN,
NOUN+CASE DEF GEN+POSS PRON 3MS, NOUN+
CASE DEF NOM grouped to NOUN). We can tag this
set to just over 96% accuracy, which is comparable
to the performance of other taggers (Al Shamsi and
Guessoum, 2006; AlGahtani et al., 2009; Hadj et al.,
2009; Diab et al., 2004) on this kind of tagset, whereas
we only achieve 91% with the full 306 tags (similarly
MADA obtains 96.6% on the coarse-grained tagset
but only 93.6% on the fine-grained (356-element)
one).

The dependency trees to be used by the parsers also have
to be labelled with functional relations. Since depen-
dency grammar is entirely concerned with relations be-
tween words, any information beyond simple constituency

has to be encoded in the labels on the relations. Such rela-
tions tend not be explicitly marked in phrase-structure trees,
since they are often implied by the label of the local tree (to
put it simply, it is not necessary to mark the NP daughter of
a sentence as its subject, because this is implicit in the rule
that says that a sentence may be made out of an NP and a
VP). We therefore have to impose a set of functional rela-
tions. We cannot use a very fine-grained set of labels here,
because the information in PATB simply does not provide
enough information. The only labels we can assign with
any degree of confidence relate to conjunctions, and to the
subject and object of the verb.
There is no consensus about the set of relations to be used
in dependency grammar. Some authors, for instance take it
that the auxiliary dominates the verb it is associated with,
while others take the opposite view. Similarly, coordinating
conjunctions are sometimes treated as heads and sometimes
as modifiers. We investigated three issues:

Is the determiner or the noun the head of an NP?
Where an NP contains a determiner, some theories (e.g. cat-
egorial grammar) treat the determiner as the head and oth-

64



ers (e.g. HPSG) treat it as a dependent of the noun. Arabic
makes less use of determiners than some other languages,
since there is no indefinite article and the definite article
is treated as a part of the noun to which it is attached, but
it does have numbers and demonstrative determiners, and
choosing whether these are heads or dependents may make
a difference.

Is the subject or the predication the head of verb-
less sentences? Arabic verbless sentences are widely re-
garded as containing an invisible ‘zero’ copula. If the cop-
ula were present, it would be the head, but since it is miss-
ing then either the subject or the predication will have to be
chosen. Which of these makes the parser perform better?

What is the head of a conjoined phrase? The choice of
how to deal with conjunctions in dependency grammar is
widely disputed, with reasonable arguments being put for-
ward on both sides. The decision to treat the number as a
modifier on the noun in the subject NP coincides with the
treatment of numbers as determiners in grammatical frame-
works such as GPSG (Gazdar, 1985), HPSG (Pollard and
Sag, 1994) and so on, and indeed with the treatment in the
original phrase-structure tree in PATB.

We will use the sentence in (1), from (Habash et al., 2009a),
to highlight the differences between our conversion and the
other Arabic dependency treebanks.

(1) ú
æ
	�AÖÏ @ ÈñÊK
 @ ú


	̄ AK
Pñ�ð 	àA 	JJ. Ë @ðP@ 	P l�'A� 	Ë@ 	àñ�Ô 	g

xmswn Alf sA’H zArwA lbnAn w+swryA fy Aylwl
AlmaDy

“Fifty thousand tourists visited Lebanon and Syria
last September.”

As can be seen in Figure 2, our dependency tree is differ-
ent from the others in the sentential part l�'A� 	Ë@ 	àñ�Ô 	g
xmswn Alf sA’H “Fifty thousand tourists”, because we con-
sidered the NOUN as the head not NOUN NUM and the others
are dependent, whereas both PADT and CATiB considered
the first NOUN NUM as the head. Furthermore, we follow
the CATiB of the conjoined NP AK
Pñ�ð 	àA 	JJ. Ë lbnAn w+swryA
“Lebanon and Syria”, where the head is the first noun, with
the conjunction as its sole daughter and the second noun as
a daughter of the conjunction.
It should be noted that this treatment of conjunction can-
not be obtained from the original PATB tree by the algo-
rithm given above. The conjoined phrase AK
Pñ�ð 	àA 	JJ. Ë (lb-
nAn w swryA: “Lebanon and Syria”) has three constituents–
the conjunction and two NPs. Specifying that the conjunc-
tion has priority over any other constituent in the percola-
tion table would produce the subtree given for this phrase
in PADT. Specifying that the conjunction has lower prior-
ity than one of the NPs would produce a subtree with ei-
ther 	àA 	JJ. Ë (lbnAn: “Lebanon”) (or possibly AK
Pñ� (swryA:
“Syria”)) as its head and the conjunction and the other
noun as daughters. There is no way to get the conjunction
as a daughter of 	àA 	JJ. Ë (lbnAn: “Lebanon”) and then AK
Pñ�
(swryA: “Syria”) as a daughter of the conjunction by using
the algorithm in Figure 1. In order to obtain trees of this
kind, we transform the original phrase structure tree so that

structures of the form T1 become T2 in Figure 3. If we
then assign DUMMY the lowest possible priority in the per-
colation table and CONJ the highest possible priority for the
entry of DUMMY in the table we obtain CATiB-style trees for
coordinated structures.

T1. S

A CONJ B

T2. S

A DUMMY

CONJ B

Figure 3: Reconstruct coordinated structures

We extend this treatment to cover cases where we have a
complex coordinated expression where several of the con-
juncts are linked by commas in addition to explicit conjunc-
tions, converting phrases structure trees like the initial tree
T1 in Figure 4 to the tree D1 in this figure instead of D2.
This is the treatment used in experiment (7) below.

Figure 4: Complex coordinated structures

4. Experimental Results
To check the effectiveness of our conversion version of
PATB to dependency tree format, we used it to train a state-
of-the-art dependency parser, namely MSTParser. The aim
here was to see how changes in the structure of the trees
affect the performance of the parser: different ways of or-
ganising trees may be better or worse at capturing the reg-
ularities encapsulated in the original phrase-structure trees,
or they make the cues that the parser depends on easier or
harder to see.
Large and complex Arabic sentences are used in training
and testing the parser (some sentences in each set contain
100 or more words). MSTParser is trained on 4000 sen-
tences and tested on 1000 sentences. We examined 8 differ-
ent ways of converting phrase-structure trees to dependency
trees, in addition to two baselines. These variations were
obtained by changing the priority of items in each entry in
the percolation table, and by applying systematic transfor-
mations to PATB trees before converting them to depen-
dency trees. The two baselines were obtained by selecting
head daughters at random, and by reversing the percolation
table that produced the best result when used normally.
The main experiments were as follows:

1. CONJ always has higher priority than anything else (so
coordinating conjunctions are the head of the coordi-
nated phrase), as in PADT; nouns have higher priority
inside NPs than determiners (opposite of PADT and
CATiB); the head of a verbless sentence is the subject
(opposite of CATiB).
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Version# Items order for each entry in the head percolation table LA UL
Random head (baseline 1) 20.2% 20.6%
Inverse of best table (baseline 2) 73.5% 74.3%

1 CONJ has higher priority than other items 80.1% 81.5%
2 Split CONJ into CONJ and ICONJ 80.5% 81.9%
3 ICONJ,CONJ have lowest possible priority 80.8% 82.2%
4 Same as (3) but determiners above nouns in NPs 80.3% 81.7%
5 Same as (2) but CATiB-style conjunctions 82.5% 83.9%
6 Same as (5) but determiners above nouns in NPs 82.3% 83.7%
7 Same as (5) but commas in conjunctions not treated as conjunctions

(i.e. tree D1 in Figure 4, not tree D2)
82.8% 84.2%

8 Same as (7) but head of verbless sentence is predication 82.3% 83.8%

Table 2: LA and UL accuracies for parsing, different head percolation table entry orders and treatments of coordination.

2. Same as (1), but sentence initial conjunctions are given
a separate tag as ICONJ.

3. ICONJ,CONJ have lower priority than anything else:
everything else as in (2)

4. Same as (2) but determiners have higher priority than
nouns in NPs.

5. CATiB-style treatment of conjunctions (as discussed
above). Everything else as in (2).

6. Same as (5) but determiners have higher priority than
nouns in NPs.

7. Same as (5), but commas in coordinated expressions
are not treated as though they were conjunctions (i.e.
tree D1 in Figure 4, not tree D2).

8. Same as (7), but the head of a verbless sentences is
assumed to be its predication rather than its subject.

The labelled attachment score (LA), i.e. the percentage of
tokens with correct head and dependency relation, and un-
labelled accuracy (UA), i.e. the percentage of tokens with
correct head, for the various transformations of PATB to
dependency tree format are shown in Table 2.
Varying the treatments of conjunction, NPs and verbless
sentences can affect the performance of the parser by
around 2.7%. The individual changes are not dramatic,
but then each such change only affects one set of relations:
there are, for instance, only around 800 determiners in the
test set, out of a total of just over 25000 words. So if every
instance of a determiner was labelled correctly in (3) and
incorrectly in (4) there would only be a 3% difference in
the total score, so the actual swing of 0.5% between these
two cases is quite significant.

5. Conclusions
The results above show that changing the rules for convert-
ing phrase structure trees to dependency trees can affect
parser accuracy even with the same parser and the same
training and testing data. We obtained LA of 82.8% and
UA of 84.2% for the head percolation table version (7)
with CATiB-style treatment of conjunction, compared with
LA ranging from 80.1% to 82.5% and UA from 81.5% to

83.9% for other percolation tables and treatments of con-
junction. It may be that one form of tree captures the un-
derlying regularities better than another, or it may be that
one form makes the contextual clues more visible to the
parser than another. Consider, for instance, the coordinated
expression in (1): the association between the verb @ðP@ 	P
(zArwA: “visit”) and the name 	àA 	JJ. Ë (lbnAn: “Lebanon”)
is likely to be stronger than that between the verb and ð
(w: “and”), so the link between the verb and the name is
more likely to be learnt and retrieved when the dependency
trees are structured as in CATiB than the link between the
verb and the conjunction would be if the trees followed the
PADT approach to conjunction.
Where two dependency formats are intertranslatable (e.g.
taking either the subject or the predicate to be the head of
an equational sentence), then it makes sense to use the ver-
sion which produces the optimal parser output, since under
these circumstances it can be translated to the alternative
if that seems preferable for some task. In particular, trans-
forming coordinated expressions so that the first conjunct
becomes the head is reversible, even in cases like young
men and women which have multiple interpretations (young
men) and women, young (men and women). Converting the
first of these so that ‘men’ becomes the head leaves young
and and as daughters, whereas the second will have and as
the sole daughter of man, and young and women as daugh-
ters of and. If the new tree is appropriately labelled then
there is no problem with re-transforming it back to the orig-
inal.
Appendix A shows UA and LA for each class of word,
where column 3 (‘right link’: UA) shows how many times
words of that class have been assigned as daughters in links
with the right head, column 5 (‘right label’) shows how
many times words of the class have been assigned as daugh-
ters in links with the right label, and column 7 (‘both right’:
LA) shows how many times they have been assigned the
right head and the right label3. The most striking thing
about this table is the score for prepositions: these are com-
mon (12% of the total number of words) and the parser
does very poorly at finding their heads (73% UA). This is

3This table contains just 29 entries–several of the full set of
39 tags do not appear as heads in the test set, either because they
never appears as heads at all or because they are rare and hence
happen not to occur in the test set (e.g. PUNC and LATIN).

66



unsurprising, since getting the right head for a preposition
is equivalent to solving the PP-attachment problem, which
is notoriously difficult. In general, we need very large
amounts of training data before straightforward statistical
techniques can detect the lexical patterns that underly suc-
cessful strategies for PP-attachment. When we start writing
TE rules using the trees that the parser obtains from our
text:hypothesis pairs, we will use the confidence measures
for particular kinds of link to as part of our confidence mea-
sure for the inferred rules.
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Appendix A: UA and LA by POS tag
Accuracy words right link (UA) % right label % right link & label (LA) %
total 25643 21590 84% 24013 94% 21231 83%
NOUN 4459 3719 83% 3898 87% 3591 81%
PREP 4075 2981 73% 4005 98% 2979 73%
DET+NOUN 3567 3210 90% 3209 90% 3080 86%
NOUN PROP 2462 2142 87% 2282 93% 2107 86%
DET+ADJ 2023 1819 90% 1929 95% 1818 90%
PV 1447 1302 90% 1424 98% 1302 90%
CONJ 967 704 73% 966 100% 704 73%
ADJ 927 757 82% 846 91% 753 81%
NUM 786 653 83% 755 96% 649 83%
ICONJ 750 721 96% 745 99% 721 96%
IV 746 596 80% 712 95% 583 78%
SUB CONJ 700 617 88% 698 100% 617 88%
DET+NOUN PROP 514 444 86% 457 89% 434 84%
POSS PRON 495 446 90% 457 92% 436 88%
PRON 373 328 88% 340 91% 319 86%
REL PRON 318 307 97% 315 99% 307 97%
PART 299 241 81% 278 93% 241 81%
DEM PRON 194 183 94% 187 96% 181 93%
ADV 128 90 70% 122 95% 89 70%
NO FUNC 109 66 61% 99 91% 64 59%
FUT+IV 78 63 81% 74 95% 63 81%
PVSUFF DO 76 76 100% 72 95% 72 95%
ABBREV 56 41 73% 56 100% 41 73%
IVSUFF DO 46 45 98% 41 89% 41 89%
REL ADV 27 23 85% 26 96% 23 85%
DET 14 11 79% 14 100% 11 79%
INTERJ 5 3 60% 4 80% 3 60%
CV 1 1 100% 1 100% 1 100%
SUB 1 1 100% 1 100% 1 100%
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Abstract
Constructing a treebank as a dynamically parsed corpus is an iterative process whichmay effectively lead to improvements of the grammar
and lexicon. We show this from our experiences with semiautomatic disambiguation of a Norwegian LFG parsebank. The main types
of grammar and lexicon changes necessary for achieving improved coverage are analyzed and discussed. We show that an important
contributing factor to missing coverage is missing multiword expressions in the lexicon.

1. Introduction
The INESS project1 (2010–2015) is building a highly de-
tailed treebank for Norwegian by parsing corpora with the
NorGram LFG grammar (Dyvik, 2000; Butt et al., 2002).
A major challenge for the automatic analysis of corpora is
incomplete coverage by the grammar and lexicon, in partic-
ular related to the phenomenon of multiword expressions.
These are poorly documented in most languages, including
Norwegian. Although NorGram has an extensive lexicon,
few multiword expressions are included. In our work with
semiautomatic disambiguation of corpora we have noted
that multiword expressions missing from the lexicon cause
many gaps in coverage, a problem that often may be solved
by simply adding the relevant expression to the lexicon.
In this paper we present a study of a small subcorpus in the
INESS Norwegian treebank. This study diagnoses some of
the reasons for missing coverage, and we show that a large
proportion of the problems are caused bymissingmultiword
expressions.

2. The parsebanking method in INESS
The parsebanking method used in the INESS project in-
volves parsing, disambiguation, and grammar and lexicon
development in an iterative cycle. This method was perhaps
first developed for HPSG grammars in the LinGO project
(Oepen et al., 2004). Overviews which describe this type
of approach are found in Branco (2009) and Bender et al.
(2011).
In our approach, a corpus is first parsed automatically us-
ing the Xerox Linguistic Environment (XLE) (Maxwell and
Kaplan, 1993) and the NorGram LFG grammar. LFG anal-
yses provide two separate but parallel levels of syntactic
analysis. There is a constituent structure (c-structure) in the
form of a context-free phrase structure tree, and a functional
structure (f-structure), an attribute–value matrix with infor-
mation on grammatical features and syntactic functions.
Since automatic parsing with a handwritten grammar pro-
duces many analyses, efficient disambiguation is necessary.

1http://iness.uib.no

This is done using discriminants, as described in more detail
elsewhere (Carter, 1997; Oepen et al., 2004; Rosén et al.,
2007; Rosén et al., 2009). After disambiguation has been
achieved, it becomes apparent whether the intended anal-
ysis is present. When this is not the case, the annotators
try to diagnose the reason for the problem. This may be
done by experimenting with XLE-Web (Rosén et al., 2005),
for instance by changing or deleting words or phrases to
check if modified sentences get an analysis, and suggesting
changes to the grammar or lexicon. After necessary changes
have been made in the grammar and lexicon, the corpus is
reparsed.
After each reparsing, the corpus is automatically disam-
biguated by means of the reapplication of cached discrim-
inants. In some cases the previously used discriminant
choices are no longer sufficient to fully disambiguate the
sentence due to the changes made in the grammar and lex-
icon. In such cases, some additional discriminant choices
must be made by the annotators.
A major advantage of this approach is that the analyses in
the treebank are always in accordance with the grammar,
and coverage may be improved in a principled way.

3. Study of the Norwegian Sofie treebank
For this study we have investigated the first 255 sentences
of the novel Sofies verden [Sophie’sWorld] (Gaarder, 1991)
to find out what the major problem types are that need to be
addressed in order to achieve coverage of a subcorpus. The
255 sentences were initially parsed without prior examina-
tion of their vocabulary. Then followed several rounds of
disambiguation, problem diagnosis, grammar and lexicon
changes, and reparsing. The results of parsing in the first
and fourth rounds are shown in Table 1 (all numbers are
percentages).

version gold not gold frag 0 sol no parse
1 26 21 26 5 22
4 78 2 4 14 2
Table 1: Initial and subsequent parse results
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In the first round, 73% of the sentences received analyses
(the categories ‘gold’, ‘not gold’ and ‘frag(ment)’, while
27% received no analyses (the categories ‘0 sol(utions)’ and
‘no parse’).
There were full analyses for 47% of the sentences, while
26% of the sentences had the intended analysis (gold) with-
out any intervention in the grammar or lexicon.
Fragment analyses occur when the grammar is unable to as-
sign a global analysis to the sentence, and instead returns the
analyses of the maximal phrases which it has been able to
parse. Fragment analyses may indicate shortcomings of the
grammar, or they may indicate strings deviating from the
grammatical norms of the language (Rosén and De Smedt,
2007). In the latter case the fragment analyses are consid-
ered as valuable information worth storing. An example
from the corpus is the sentence - Det ... det er en hemme-
lighet ‘It ... it is a secret’, with the dots signaling hesitation
on the part of the speaker. The fragment analysis is shown
in Figure 1, indicating the analyzable chunks of the string.

Figure 1: Fragment analysis

The category ‘0 solutions’ means that the parser terminated,
but found no analysis in accordance with the grammar,
while the category ‘no parse’ means that the parser didn’t
terminate within the time and space parameters set for it. As
we will show, the first category was significantly reduced
as a result of the interaction between annotators and gram-
mar developer, while the second category grew as a result
of increased grammar complexity, leading to occasional ex-
plosions in local ambiguities. The latter problem will be ad-
dressed later in the project by devising methods for shallow
preprocessing of sentences, thus reducing local ambiguity.

4. Problem analysis
We have done an in-depth study of the parsed sentences
that were missing the intended analysis in version 1 but

that did receive the intended analysis in version 4. In par-
ticular, we have studied the interventions that were neces-
sary in order to produce the desired analysis. We have con-
centrated on the sentences that originally had full analyses
rather than fragments, since these have received the most
attention so far in disambiguation and problem diagnosis.
For a small number of these sentences (2%) it was not pos-
sible to ascertain why they did not get the intended analy-
sis originally. This could be because the problem diagnosis
was not recorded. For most of the sentences, we have, how-
ever, identified the problem or problems; some sentences
had multiple problems. For this set of sentences (the 21%
‘not gold’ in version 1) the problems may be analyzed into
two main categories: grammar problems (29%) and lexicon
problems (71%). The two most prevalent types of lexicon
problems are multiword expressions and lexical category
problems, whichmake up 41% and 31%of the lexicon prob-
lems respectively. In the following sections we discuss the
various problem types.

4.1. Grammar problems
Under the category of grammar problems we have consid-
ered various instances of shortcomings in the rule compo-
nent of the grammar. In these cases it is necessary to extend
the grammar by including types of constructions that have
not yet been covered, and in order to solve such problems,
the grammar writer must face the challenge of describing
exactly the necessary classes of constructions, while avoid-
ing the introduction of changes that may cause the grammar
to overgenerate. Required changes may involve the writing
of new phrase structure rules, as well as the modification of
existing rules. Reported grammar problems may be illus-
trated by two examples.

(1) Et
a

menneske
human

måtte
must

da
then

være
be

noe
something

mer
more

enn
than

en
a

maskin?
machine

‘A human then had to be something more than a
machine?’

In (1) the original analysis of the comparative construction
noe mer enn en maskin was not satisfactory. The quantifier
noe was recognized as an adverb of degree (ADVdeg), giv-
ing the meaning ‘somewhat more’, and the expression noe
mer was parsed as a quantifier phrase (QP), as shown in the
c-structure in Figure 2. The intended analysis was achieved
by modifying the rule describing quantifier phrases, and the
modification involved allowing for recursivity in phrases
of this category. In simplified terms, recursivity was intro-
duced on the condition that the left-most Q must be a form
of the quantifier noe. This resulted in a new analysis of the
phrase noe mer enn en maskinwhere noe is correctly parsed
as a quantifier, and the entire expression is assigned the hi-
erarchical structure shown in Figure 3.

(2) Uansett
regardless

hva
what

Sofie
Sofie

gjorde,
did

gjorde
did

hun
she

akkurat
exactly

det
the

samme.
same

‘No matter what Sofie did, she did just the same.’

70



Figure 2: Incorrect analysis of noe mer

Figure 3: Correct analysis of noe mer

In (2) an unsatisfactory analysis of the expression uansett
hva Sofie gjorde was amended by introducing a new phrase
structure rule allowing certain prepositions to take interrog-
ative constructions as their object. Originally, the expres-
sion hva Sofie gjorde was wrongly recognized as a noun
phrase with a clausal postmodifier, and in that analysis
the phrase was treated as the argument of the preposition
uansett, as shown in Figure 4. Here the grammar update in-
volved creating a special rule for prepositional phrases tak-
ing interrogative phrases as object (PPintobj), as shown in
Figure 5, and the application of this rule is restricted to a
limited set of prepositions, of which uansett is an example.
Solving this problem also involved adding to the lexicon
a new reading of uansett with the lexical category Pintobj.
In the new analysis we achieved a satisfactory parse of the
interrogative expression hva Sofie gjorde, where hva is cor-
rectly recognized as an interrogative pronoun.
In NorGram the analysis of punctuation is incorporated in
the rule component of the grammar. Hence, cases where
sentences have not been parsed because the parser has not
recognized specific uses of punctuation marks may in the
context of the present study be regarded as special cases of
grammar problems. Among the challenges encountered in
automatic parsing of authentic text is the correct analysis of

Figure 4: Incorrect analysis of hva Sofie gjorde

Figure 5: Correct analysis of hva Sofie gjorde

various kinds of punctuation marks. Since the orthographic
conventions governing the use of punctuation marks are not
always very clear or generally agreed upon, it is not a trivial
task to handle the various possible uses of different marks.
In the Sofie treebank we have observed several cases where
sentences have not been parsed successfully because par-
ticular ways of using specific punctuation marks were not
covered by the grammar rules. Some examples of the use of
dashes may illustrate this type of challenge.

(3) Der
there

lå
lay

et
a

prospektkort
postcard

også
also

— med
with

bilde
picture

av
of

en
a

sydlig
southerly

strand
beach

‘There was a postcard too — with a photo of a
southern beach.’

(4) Joda
yes

— det
it

var
was

ekte
genuine

nok,
enough

med
with

både
both

frimerke
stamp

og
and

stempel.
postmark

‘Oh yes — it was real enough, with both a stamp and
a postmark.’
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(5) Sofie
Sofie

stirret
stared

ned
down

i
in

asfalten
asphalt:the

— og
and

opp
up

på
on

venninnen.
girlfriend:the

‘Sofie stared down at the asphalt — and back at her
friend.’

In these three sentences the effect of the dash is to create a
short pause, and in the cases of (4) and (5) this pause puts
a slight emphasis on the expressions following the dashes.
In the original treebank version the parser produced a frag-
ment analysis for each of these sentences. With respect to
(3), this was the case because the dash prevented the parser
from recognizing the prepositional phrase med bilde av en
sydlig strand as being part of the sentence, and in the case
of (5), the initial word jodawas not incorporated in the sen-
tence because of the following dash. As regards sentence
(5), it contains two coordinated PPs, ned i asfalten and opp
på venninnen, which are linked together by the conjunction
og, but the parser fails to recognize the coordination be-
cause of the dash preceding the conjunction. In each of these
cases, substituting a comma for the dash gave a full analysis
of the sentence, and the problems were solved by amending
the rule component of the grammar to allow dashes on a par
with commas in these types of syntactic positions.
These three examples illustrate a few points that are com-
mon to several cases of punctuation problems. Firstly, to
solve such problems it may be necessary to modify sev-
eral grammar rules; in relation to the dash, rules applying
to sentence as well as to verb phrase level were involved.
Secondly, because the use of several types of punctuation
marks, such as dashes, colons, and quotes, may be rather
idiosyncratic, i.e. governed by individual authors’ prefer-
ences, fairly ad hoc solutions may be required by the gram-
mar developer in order to account for the various uses of
different punctuation marks. The practical consequence of
the latter point is that the punctuation found in a given cor-
pus may to a great extent determine the ways in which the
grammar writer chooses to solve the punctuation problems
at hand.

4.2. Problems with multiword expressions
The largest group of lexicon problems encountered in our
analysis had to do with multiword expressions (MWEs),
which can roughly be defined as “idiosyncratic interpreta-
tions that cross word boundaries (or spaces)” (Sag et al.,
2002). MWEs challenge the division between grammar and
lexicon in linguistic theory due to the fact that they are lex-
icalized, but they may show variation at the morphological,
syntactic and semantic levels.
Varying in terms of syntactic flexibility, MWEs can
be grouped into the subcategories fixed, semi-fixed and
syntactically-flexible expressions (Baldwin and Su Nam
Kim, 2010; Sag et al., 2002). Semi-fixed and syntactically
flexible expressions pose the biggest challenges in auto-
matic analysis because they inflect, take internal modifi-
cation or in other ways realize morphosyntactic variation.
Different morphosyntactic categories of MWEs tend to ad-
here to different flexibility categories; for instance, verbal
constructions are generally syntactically flexible. Depend-

ing on their flexibility, MWEs can be treated as words with
spaces (fixed expressions) or as constructions. Construc-
tions may either deviate from the morphosyntactic regular-
ities of the language or be fully compositional in the sense
that the rules of the grammar capture their syntactic and se-
mantic properties satisfactorily. In these cases we have left
them ‘as they are’ and not explicitlymarked them asMWEs.
Sag et al. (2002) single out four main problems related to the
representation of MWEs in NLP systems. Treating MWEs
as a problem of the lexicon poses a flexibility problem be-
cause we fail to capture morphosyntactic flexibility such as
internal modification, or cases where some constituents in-
flect while others do not. Listing every single MWE in the
lexicon also leads to a lexical proliferation problem: we lose
out on generalities such as families of verbal constructions.
By treatingMWEs as a problem of grammar, the application
of general compositional methods will lead to an overgen-
eration problem because the grammar will allow for anti-
collocations and other unacceptable constructions. Finally,
idiomaticity problems may occur because grammar rules,
working on sentence level, cannot distinguish between lit-
eral and figurative meanings.
In their diagnosis, the annotators reported all instances of
possible MWEs that might have caused problems. The de-
cision on which expressions should be implemented as
MWEs and which should get a compositional analysis was
made for each instance. With lexicon overpopulation in
mind, we have as far as possible tried to analyze light verb
constructions compositionally, although their deviating se-
mantics clearly indicate what Baldwin and Kim refer to as
MWEhood (Baldwin and Su Nam Kim, 2010). We cannot
be certain that similar expressions have always been ana-
lyzed the same way, but as we gain experience in this early
phase of annotation and get a better overview of the differ-
ent types of MWEs, we will eventually be able to have a
more principled approach to their identification and imple-
mentation.
For this study we have chosen to classify MWEs as a lex-
icon problem because of the practical implications of their
analysis within the LFG framework: all implementations of
MWEs have so far taken place in the lexicon, and not at rule
level. Their syntactic variation is still fully accounted for by
the grammar.
We have distinguished between two types of MWEs: verb
frames and other MWEs. MWE verb frames include light
verb constructions (ta slutt ‘end’), particle verbs (se ut
‘look’), and selected prepositions (vite om ‘know about’,
‘be aware of’). Light verb constructions are verbs with noun
complements where the verb meaning has become semanti-
cally ‘light’ compared to the contribution of the noun to the
meaning of the overall expression (Baldwin and Su Nam
Kim, 2010). Particle and prepositional verbal constructions
have one or more associated lexical items which modifiy
the verb predicate, making the compositional analysis (lit-
eral meaning) unacceptable. As a particle verb, se ut means
‘look’ in the sense ‘look like’ or ‘appear’, while its literal
meaning is ‘look out’, as in se ut gjennom vinduet ‘look out
(through) the window’.
Verbal constructions have been implemented as verbs with
non-thematic objects (light verb constructions), as particle
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Figure 6: Constituent and functional structure representations with particle verb

verbs or as verbs with selected prepositions, depending on
their syntactic properties. The LFG distinction between c-
and f-structure allows NorGram to capture the composi-
tional and non-compositional properties of MWEs in a per-
spicuous way. Thus, all the verb frame MWE types men-
tioned above express the non-compositional meaning of the
MWE as augmented predicates in the predicate-argument
structure: ‘ta*slutt<(↑SUBJ)>(↑OBJ)’, ‘se*ut<(↑SUBJ)>’,
‘vite*om<(↑SUBJ)(↑OBL-TH)>’. The words slutt, ut and om
are analyzed respectively as a non-thematic object (outside
the argument frame) selected by the verb entry, a selected
particle, and a selected preposition. The c-structure captures
the regular syntactically productive analysis of the expres-
sions, allowing the usual variations in constituent order.
Only when the MWEs allow no (or insignificant) formal
variation and no intervening words may they be analyzed
as ‘words with spaces’ in the lexicon.
An example of a particle verb from the Sofie corpus is pro-
vided in 6; the particle an is only found in MWEs.

(6) Men
but

det
it

gikk
went

an.
PRT

‘But it was possible.’

The MWEhood of the particle verb construction is shown
by the complex predicate name in the value of the PRED
feature in the f-structure in Figure 6. Examples of ‘words
with spaces’ are expressions such asmed ett ‘suddenly’ and
borte vekk ‘gone’, which are fixed and thus simply added to
the lexicon with the appropriate lexical category.
We also recorded problems with MWEs that belong to the
group of semi-fixed expressions. As an example, the an-
notators suggested that the multiword unit et eller annet
‘some, something’ (literally ‘one or another’) was the main
problem in the unsatisfactory analyses of the sentences in 7
and 8.

(7) Altså
thus

måtte
must

verdensrommet
space:the

en
one

eller
or

annen
another

gang
time

ha
have

blitt
become

til
to

av
of

noe
something

annet.
else

‘So space must once have been created from
something else.’

(8) Til
to

syvende
seventh

og
and

sist
last

måtte
must

et
one

eller
or

annet
other

en
one

gang
time

ha
have

blitt
become

til
to

av
of

null
zero

og
and

niks.
nought
‘Ultimately something must once have been created
from diddly-squat.’

The expression was added to the lexicon as a MWE quan-
tifier (Q). Like many quantifiers in Norwegian, the MWE
agrees with the quantified nominal, and two of its compo-
nents— the determiner en and the adjectival determiner an-
nen — inflect in gender. This was implemented by adding
three different entries to the lexicon, one for each gender
(en eller annen M, ei eller anna F, et eller annet NEUT).
Adding one entry in the lexicon for each possible form of a
MWE is not very economical. If we adopt this practice we
risk overpopulation, and we fail to capture the morpholog-
ical generalities of the set of inflectional forms, both com-
mon problems when treating MWEs as problems of the lex-
icon as described by Sag et al. (2002). These kinds of prob-
lems thus call for being somewhat restrictive with respect
to adding newMWEs to the lexicon, and how to implement
them. We want to capture as many MWEs as possible, but
we also want to avoid representing every exception to the
grammar rules in the lexicon. However, such constructions
are so prevalent that they pose problems for syntactic anal-
ysis and thus cannot be ignored, amply illustrated by the
sentence in 8. In the phrase structure tree representing its
constituent structure, shown in Figure 7, the number of ter-
minal nodes is far smaller than the number of individual
words, reflecting the fact that there are four MWEs in the
sentence.
MWE implementation accounts for 41% of the lexicon up-
dates carried out after the first parse of Sofie. The main
question remains how to represent flexibility, and how to
account for families of constructions and other kinds of
structural frames. Given the frequency of MWEs among
the problems encountered, it seems reasonable to assume
that the further grammar development would benefit from
applying fixed criteria for MWEhood and from identifying

73



Figure 7: Sentence with multiple MWEs

optimal techniques of analysis for the implementation of
different types of MWEs. This could provide a more consis-
tent treatment of MWEs in the grammar, and make us better
equipped to meet the challenges MWEs pose in automatic
processing.

4.3. Other lexicon problems
FollowingMWEs, the major group among the recorded lex-
icon updates is lexical category updates, with 31 % of the
reported problems. In addition, we found some problems re-
lated to lexical frames (or subcategorization), new lexicon
entries, and new word senses added to the lexicon. Lexi-
cal category updates are cases where words were reclassi-
fied after a problem had been reported for the sentences in
which they occurred. An example is riktignok ‘true’, ‘in-
deed’, which was previously classified as a verb phrase ad-
verb (ADV) in the lexicon.

(9) Et
a

menasjeri
menagerie

var
was

en
a

samling
collection

av
of

forskjellige
different

dyr,
animals

og
and

riktignok
indeed

— Sofie
Sofie

var
was

ganske
quite

godt
well

fornøyd
content

med
with

sin
her

egen
own

samling.
collection

‘A menagerie was a collection of different animals,
and Sofie was indeed quite content with her own
collection.’

The part of speech adverb is a large class which encom-
passes many words with quite different syntactic proper-
ties. The words traditionally described as adverbs have verb
phrase adverb as their default classification in our lexicon.
In the case of riktignok, it was the syntactic distribution of
this category, as specified in the grammar rules, that was
found to cause problems for the constituency analysis. The
example illustrates that lexical category updates are often
grammatically motivated in the sense that words with a cer-
tain classification in the lexicon sometimes turn out to have
syntactic properties that single them out as a separate cate-

gory. After annotator intervention, riktignok was addition-
ally classified as a root adverb (ADVroot). Root adverbs
like riktignok differ from other adverbs because they can
form utterances on their own.
The lexical categories in NorGram are fundamentally based
on syntactic distribution, and by parsing Sofie we discov-
ered several instances of previously unseen syntactic behav-
ior of different lexical categories, or members of these cat-
egories, leading to reclassification in the lexicon. This may
be further exemplified by the class of reflexive pronouns,
which after intervention is divided into two categories, non-
referring and referring reflexives. A referring reflexive in
Norwegian is the MWE seg selv in sentences such as barna
vasker seg selv ‘the children wash themselves’, as opposed
to the non-referring seg in barna vasker seg ‘the children
wash’, where seg is used with the reflexive verb vaske. Pre-
viously, NorGram did not have an analysis for the special
case of referring seg, as found in 10 and 11.

(10) Straks
immediately

Sofie
Sofie

hadde
had

lukket
closed

porten
gate:the

bak
behind

seg,
self

åpnet
opened

hun
she

konvolutten.
envelope:the

‘As soon as Sofie had closed the gate behind her, she
opened the envelope.’

(11) Sofie
Sofie

skyflet
shoved

katten
cat:the

ut
out

på
on

trappen
stair:the

og
and

lukket
closed

døren
door:the

etter
after

seg.
self

‘Sofie shoved the cat out onto the stairs and closed
the door behind her.’

The examples show that the simple form seg can also be
a referring reflexive in certain contexts, and due to these
findings, this case is now singled out as a special category,
PRONrfl2, restricted by the grammar to the relevant con-
texts.
The next type of lexicon update is the one we termed ‘lex-
ical frames’. These may also be defined as grammatically
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motivated updates, for instance when a word does not have
the needed valency. An example is the verb huske ‘remem-
ber’, which was found to lack an intransitive reading. As a
result, intransitive huske-remember has now been added to
the lexicon. We also encountered an unacceptable analysis
of a sentence with the MWE candidate komme rekende på
en fjøl.

(12) Det
it

hadde
had

bare
only

kommet
come

rekende
drifting

på
on

en
a

fjøl.
board

‘It had just appeared from nowhere.’

Instead of treating the whole expression as a MWE, we ac-
counted for the construction komme rekende, which is an
instance of a general infinitive–present participle construc-
tion restricted to certain verbs, and which was already im-
plemented. The necessary update was made in the lexical
entry for the verb reke.
As a result of the problem diagnostics, four new
interjection-like words were also added to the lexicon as
root adverbs (ADVroot). These were the words næh ‘nah’,
neivel ‘no indeed’, pøh ‘bah’, and fillern ‘darn’. Like most
interjections, these are all very colloquial with a fairly un-
orthodox orthography.
The final type of lexicon update is the addition of new
senses to words that are already in the lexicon. We recorded
two cases of missing senses, of which two concerned the
same word, the noun gang ‘corridor’. One instance was
found in the sentence I neste øyeblikk var hun ute i gangen
‘The next moment she was out in the hallway’. The main
problem was actually not the sense in itself, but restrictions
on semantic features associated with that particular sense,
since the grammar sometimes requires that semantic fea-
tures must be checked against features of associated words.
During the first parse, gangwas only implemented as a tem-
poral noun in the lexicon. After update, the lexicon now
distinguishes between gang-time and gang-corridor. This
also allows using the ‘regular’, non-temporal preposition i
‘in’ together with gang, something which was not possi-
ble after the first parse and which was the direct cause of
the unintended initial analysis. Since the only implemented
analysis of gang was temporal, only i with temporal fea-
tures could be used with this noun. Having added the non-
temporal gang-corridor, we are now able to choose the non-
temporal i.
Among the problems identified as lexical updates, many
proved to be problems also of the grammar. This demon-
strates that the different components of a (computational)
grammar are closely interrelated, and that updates to one
of the components will almost certainly affect the other.
We have several times experienced unfortunate outcomes
of grammar and lexicon updates, and keep in mind that any
change to the grammar bears a risk of allowing for overgen-
eralization and other unwanted side-effects.

4.4. Related work
Some related research has been aimed at analyzing causes
of missing parser coverage and improving coverage by au-
tomatic lexical acquisition. Nicholson et al. (2008) give a
breakdown of gaps in coverage, including 7% due to miss-
ing MWEs, and propose the addition of lexical entries by

hypothesizing their types. In a similar vein, Villavicencio et
al. (2007) cite 8% parse failures due to missing MWEs and
propose a lexical type predictor as well. Other lexical type
predictors are proposed by Cholakov and vanNoord (2010),
who assign lexical types to single words only, and Zhang et
al. (2010), who take a step towards acquiring MWEs, al-
though with limits on the valency and complexity of the
covered constructions. Some of these methods seem com-
patible with our parse methods, but so far it seems that ac-
curate remedial actions for MWEs still need a manual inter-
vention step.

5. Conclusion
Treebanking by the automatic parsing of corpora is a way
of validating a computational grammar and lexicon, thereby
identifying gaps in the computational treatment of a lan-
guage. The lexicon for Norwegian used in INESS is quite
extensive and in general provides excellent coverage. Exist-
ing resources for Norwegian— and also for other languages
— are, however, quite lacking with respect to MWEs. The
lexical resources for Norwegian contain a number ofMWEs
which were taken from traditional dictionaries or from Nor-
KompLeks (Nordgård, 1998), but the latter was also based
on dictionary examples, not on corpus study. Our experi-
ence shows that these are insufficient. Although our small
study showed that there were two main types of lexicon
problems, lexical category problems and problems with
multiword expressions, these two categories differ in an es-
sential way. The lexical category problems concern the cat-
egory assigned to items already within the lexicon. Solving
these problems involves changing the lexical category. The
big challenge posed by multiword expressions is that we do
not have access to an inventory over them. Solving these
problems is therefore an undertaking of a much greater di-
mension.
The interactive and iterative approach adopted in INESS
makes it possible to integrate more and more MWEs into
the lexicon and grammar and to thereby reach better cover-
age, especially in the semiautomatically disambiguated part
of the treebank described in this paper. We will, however,
also create a large parsebank that will be fully automatically
disambiguated, and for this, we cannot rely on discovering
MWEs during the annotation process.
The work done with lexical issues in INESS will contribute
to improving the lexical resources available for Norwegian.
But it is important that independent work is done on finding
and analyzing MWEs, not only for Norwegian but also for
other languages.
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